1. Home
Software key Topics

A Comprehensive Guide on Software Key Tutorials

Elevate your software skills with our comprehensive tutorials covering concepts from basic to advanced techniques. Dive in and become a software pro!

  • 220 Lessons
  • 37 Hours
right-top-arrow

Tutorial Playlist

218 Lessons
104

Google Colab - How to use Google Colab

Updated on 19/07/20241,946 Views

Introduction to Google Colab

Google Colab, short for Google Colaboratory, is a product from Google Research. This cloud-based service allows you to write, run, and share Python code via your browser. It eradicates the need for complex setup procedures or high-end hardware purchases. Its zero-configuration setup and free access to computational resources set it apart.

Why it's called 'Colaboratory'? It's designed to facilitate collaboration. Not only can you write and execute your code, but you can also share it easily with peers. If you're working on a team project or conducting academic research, Google Colab allows smooth collaboration. The impressive part is its compatibility with most of the popular libraries in Python, such as TensorFlow, PyTorch, and Scikit-learn.

Google Colab is like a virtual playground where you can easily experiment, learn, and develop your data analysis or machine learning projects. Moreover, it supports Markdown, which means you can create comprehensive notebooks, combining executable code, rich text, images, and comments all in one place.

Google Colab: The Interactive Python Environment

If you're familiar with Python programming, you might know about Jupyter Notebooks. They're popular for data analysis, visualization, and Machine Learning. Imagine having this kind of environment but with added features and free access to powerful resources. That's Google Colab for you!

Google Colab is an interactive Python environment that operates entirely online. It means you can access your Python code anywhere, at any time. All you need is an internet connection and a Google account. You can create, run, and share your Python notebooks directly in your browser. This feature liberates you from concerns about your system's configuration or operating system.

One of the primary benefits of Google Colab is its real-time collaboration feature. Similar to sharing and editing Google Docs or Sheets, you can share your notebooks with your teammates or peers. You can work together on the same notebook, writing and executing code simultaneously. It’s quite like a digital whiteboard but for coding!

Google Colab also supports various visualization libraries. You can create engaging, interactive, insightful plots and graphs in your notebooks. You can also integrate forms with your code, making your notebooks more interactive and user-friendly.

So, Google Colab is more than an interactive Python environment. It's a platform that promotes learning, experimentation, collaboration, and productivity.

Key Features of Google Colab

Google Colab is a dynamic platform teeming with features that make it a go-to for many programmers. Here are some key characteristics that truly set it apart:

1. Free Access to GPU

Google Colab provides free access to a GPU (Graphics Processing Unit). This is a tremendous asset for complex computational tasks like training deep learning models.

2. Interactive Python Environment

You can write, run, and debug Python code in real-time. It's a great feature for prototyping, experimentation, and learning.

3. Zero Configuration

No need to install anything. All you need is a web browser and a Google account. It's ready to use straight out of the box!

4. Real-Time Collaboration

You can share your notebooks and work on them together with your peers, much like Google Docs.

5. Integration with Google Drive

You can save your notebooks directly to Google Drive, making managing and sharing your work easy.

6. Support for Popular Libraries

Google Colab supports most Python libraries like TensorFlow, PyTorch, Keras, OpenCV, and more. You can import these and use them directly in your code.

7. Import/Export Notebooks

You can import notebooks from GitHub, upload them from your local system, or even from Google Drive. Exporting is just as simple!

8. Interactive Forms

This feature lets you add form fields in your notebook, making it interactive and thereby enhancing the user experience.

9. Markdown Support: You can write explanations and notes or document your code using Markdown. It helps in creating comprehensive, easy-to-understand notebooks.

10. Code Snippets

Google Colab offers a collection of code snippets that you can directly insert into your notebooks. These include examples of charting, Machine Learning, data manipulation, and more.

These features make Colab a versatile and powerful tool. Whether you're into Data Science, Machine Learning, or just learning Python, it can enhance your coding experience.

Setting Up Your Google Colab Account

Follow these simple steps to set up your Google Colab account:

1. Sign in to Google

Open your web browser and sign in to your Google account.

2. Go to Google Colab

In the address bar of your browser, type ‘colab.research.google.com’ This will take you to the Google Colab interface.

3. Welcome Notebook

You'll see a welcome notebook that introduces you to the features of Colab.

4. Create a New Notebook

Click on 'File' in the top-left menu, then select 'New notebook'. A new tab will open with an untitled notebook.

5. Rename the Notebook

Click on 'Untitled0.ipynb' at the top of the page. This will allow you to rename the notebook to something for your project.

6. Check the Runtime

Before you start coding, check the runtime of the notebook. Go to 'Runtime' > 'Change runtime type' and make sure that Python 3 is selected. If you want to use a GPU, select 'GPU' under 'Hardware accelerator.'

7. Start Coding: Now, you're all set to start coding. You can click on '+ Code' or '+ Text' to add new code or text cells to your notebook.

8. Save Your Notebook

Once you've finished coding, make sure to save your notebook. Click 'File' > 'Save'. Your notebook will be saved to your Google Drive under a folder named 'Colab Notebooks'.

Installing and Using Libraries in Google Colab

Working with libraries is an integral part of any Python programming task. In Colab, you can easily install and use a wide array of libraries. Here's a simple guide to help you navigate through the process:

1. Using Pre-installed Libraries: Google Colab comes pre-loaded with many popular Python libraries, such as Numpy, Pandas, Matplotlib, TensorFlow, and PyTorch. To use them, you only need to import them into your code.

For example, to use Pandas, write import pandas as pd in a code cell and run it.

2. Installing New Libraries

If a library you wish to use isn't pre-installed, you can install it using pip, Python's package manager. In a code cell, write !pip install library-name. For instance, to install the library Seaborn, type !pip install seaborn and then run the cell.

3. Importing Installed Libraries

Once you've installed a new library, you can import it into your code like a pre-installed one. Example: Write ‘sns’ to import Seaborn.

4. Checking Installed Libraries

To see a list of all installed libraries and their versions, you can run !pip freeze in a code cell. This will output a list of library names and their respective version numbers.

5. Upgrading Libraries

If you need to upgrade a library to a newer version, you can do so using pip. The command is !pip install --upgrade library-name. For instance, to upgrade TensorFlow, write !pip install --upgrade tensorflow.

Remember

The changes you make, including any libraries you install, only persist during your current session. When you start a new one, you'll begin with the default set of pre-installed libraries and will need to reinstall any additional ones you wish to use.

Understanding Google Colab's Computational Resources

One of Colab's standout features is its access to computational resources. It operates in a cloud-based environment, which means it uses Google's servers for computation. You don't have to worry about your local machine's limitations or configurations. You get a virtual machine with decent RAM and disk space for your computations. The exact resources can vary. Colab typically offers about 12GB of RAM and 50GB of disk space.

How to Import and Export Data in Google Colab

Colab offers many ways to import and export data. You can upload files directly, read files from your Google Drive, or even load data from GitHub via a URL. There's a files module in Colab that has upload and download functions for this purpose. You can also use Python libraries like Pandas to read data files. To export data, you can write your data to a file and then download that to your local system. Alternatively, you can save files directly to Google Drive.

Performing Data Analysis with Google Colab

Colab provides an excellent environment for performing data analysis. You can conduct data analysis tasks with libraries like Pandas for data manipulation, Matplotlib and Seaborn for data visualization, and Scikit-learn for Machine Learning. The workflow in Colab is interactive, meaning you can write some code, run it, see the output, and then decide on the next steps. This makes it easier to explore your data, check your assumptions, and refine your analysis as you go. Moreover, you can document your entire process in the notebook, making your analyses transparent and reproducible.

Common Challenges and Solutions in Google Colab

While Colab is an excellent tool, you may encounter a few challenges:

  1. Session Timeouts - Google Colab provides a maximum runtime of 12 hours. For longer tasks, this can be limiting. A way around this is to segment your tasks into smaller parts that can run within this limit.
  2. Loss of Data After Session Ends - Colab does not save data after the session ends. To avoid data loss, regularly save it to Google Drive or download it to your local machine.
  3. Limited GPU Availability - Sometimes, due to high demand, the GPU may not be available. Try again after a while, it should be accessible.

Tips and Tricks for Efficient Coding in Google Colab

Here are a few tips for efficient coding in Colab:

  1. Keyboard Shortcuts - Colab offers many keyboard shortcuts to speed up your coding. For instance, use Shift+Enter to run a cell.
  2. Use the Table of Contents - For lengthy notebooks, use the table of contents for easy navigation.
  3. Leverage Code Snippets - Colab has a collection of code snippets that can serve as templates for various tasks.

Conclusion

Google Colab emerges as a highly powerful, accessible, and efficient tool for Python programming, mainly in the fields of data analysis and Machine Learning. It combines the simplicity of Python with the robustness of advanced computational resources. This lets users perform complex tasks with ease. From beginners in coding to seasoned Data Scientists, Colab offers a versatile platform to learn, experiment, collaborate, and produce meaningful work. As we look towards the future, the ongoing evolution of Colab holds great promise in further enriching the landscape of Data Science and Machine Learning.

FAQs

1. How to run non-Python code in Google Colab?

Although Colab primarily supports Python, you can also run code in other languages. For instance, you can execute JavaScript code within Colab notebooks using the %%javascript magic command before your JavaScript code. Similarly, you can run shell commands by prefixing them with an exclamation mark.

2. What is the purpose of 'Run All' and 'Run Before' options in the Colab Runtime menu?

'Run All' and 'Run Before' are convenient options for executing multiple cells simultaneously. 'Run All' executes all the cells in your notebook in their order from top to bottom. Whereas 'Run Before', runs all cells that are positioned before the currently active cell in the notebook.

3. How can I compare different versions of the same notebook in Colab?

Google Colab provides a 'Revision history' feature. This tool allows you to see past versions of your notebook, compare changes, and even revert to an older version if needed. You can access it by clicking on 'File' > 'Revision history'.

4. How to use Google Colab offline?

Since Colab is a cloud-based service, it requires an active internet connection to access, run, and save your notebooks. However, once you've opened a notebook, you can work on it offline, but you won't be able to run cells or save your changes until you reconnect to the internet.

Pavan

PAVAN VADAPALLI

Director of Engineering

Director of Engineering @ upGrad. Motivated to leverage technology to solve problems. Seasoned leader for startups and fast moving orgs. Working …Read More

Get Free Career Counselling
form image
+91
*
By clicking, I accept theT&Cand
Privacy Policy
image
Join 10M+ Learners & Transform Your Career
Learn on a personalised AI-powered platform that offers best-in-class content, live sessions & mentorship from leading industry experts.
right-top-arrowleft-top-arrow

upGrad Learner Support

Talk to our experts. We’re available 24/7.

text

Indian Nationals

1800 210 2020

text

Foreign Nationals

+918045604032

Disclaimer

upGrad does not grant credit; credits are granted, accepted or transferred at the sole discretion of the relevant educational institution offering the diploma or degree. We advise you to enquire further regarding the suitability of this program for your academic, professional requirements and job prospects before enr...