Tutorial Playlist
As Python continues its upward trajectory in the tech domain, the knowledge of multithreading is indispensable for professionals eager to extract maximum efficiency from their Python applications. This concept allows professionals to harness the power of concurrent execution, leading to optimized application performance and efficient CPU resource utilization. Aimed at those familiar with Python's basics, this tutorial delves into the intricate details of multithreading in Python.
Multithreading, a facet of multiprocessing, serves as a potent tool to optimize CPU usage. It encompasses the concurrent running of multiple threads, allowing for a judicious resource allocation and an accelerated execution of tasks, primarily in I/O-bound scenarios.
In Python programming, a process is perceived as a self-sufficient unit of execution. Distinct from threads, processes are quite robust, equipped with their own dedicated memory space, ensuring that the resources they utilize aren't easily tampered with by other processes. This makes processes stable and less prone to interference. When a program is initiated, a process is born, guiding the execution. Each process possesses a unique process ID, distinguishing it from others and affirming its autonomy.
Python's threading capability is often hailed as a significant boon for optimizing the efficiency of applications. It offers an avenue for concurrent operations, especially in scenarios where parallelization can boost performance without necessitating separate memory spaces as processes do.
In the computing ecosystem, a thread is visualized as a diminutive of a process. It is a lighter execution unit that operates within the confines of a parent process. Multiple threads can coexist within a single process, executing concurrently and enhancing the throughput of applications.
Multithreading is a technique in Python that allows you to execute multiple threads concurrently within a single process. Each thread represents an independent unit of execution that can run in parallel with other threads. Python's threading module is commonly used for implementing multithreading. Here's an example and some explanations:
Here is an example of multithreading in Python:
Code:
import threading
import time
# Function to simulate a task
def worker_function(thread_id):
  print(f"Thread {thread_id} started.")
  time.sleep(2)  # Simulate some work
  print(f"Thread {thread_id} finished.")
# Create multiple threads
threads = []
for i in range(3):
  thread = threading.Thread(target=worker_function, args=(i,))
  threads.append(thread)
# Start the threads
for thread in threads:
  thread.start()
# Wait for all threads to finish
for thread in threads:
  thread.join()
print("All threads have finished.")
In this example, three threads are created, each simulating work using the worker_function. The threads execute concurrently, and the main program waits for all threads to finish using the join() method.
Explanation:
We import the threading module to work with threads and the time module to simulate some work. The worker_function is defined to simulate a task that each thread will execute. It takes a thread_id parameter to identify the thread. We create three threads and add them to the threads list. Each thread is assigned the worker_function as its target, and a unique thread_id is passed as an argument.
We start each thread using the start() method. This initiates their execution. To ensure that the main program waits for all threads to finish, we use the join() method for each thread. This blocks the main program until each thread has completed. Finally, we print "All threads have finished" to indicate that all threads have completed their tasks.
Multithreading can be useful for tasks that can be parallelized to improve program performance, such as concurrent data processing, I/O operations, or running multiple tasks simultaneously.
Python's concurrent.futures module provides a ThreadPoolExecutor class that allows you to easily create and manage a pool of threads for concurrent execution of tasks. This is an alternative to the lower-level threading module and provides a higher-level interface for working with threads. Here's an example of using ThreadPoolExecutor:
Code:
import concurrent.futures
# Function to simulate a task
def worker_function(thread_id):
  print(f"Thread {thread_id} started.")
  return f"Thread {thread_id} result"
# Create a ThreadPoolExecutor with 3 threads
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
  # Submit tasks to the executor
  futures = [executor.submit(worker_function, i) for i in range(3)]
  # Retrieve results as they become available
  for future in concurrent.futures.as_completed(futures):
    result = future.result()
    print(result)
print("All threads have finished.")
In this example, the ThreadPoolExecutor efficiently manages a pool of threads, executes tasks concurrently, and returns results as they become available. This approach simplifies the management of threads and is particularly useful for parallelizing tasks in a controlled and scalable way.
Explanation:
We import the concurrent.futures module, which contains the ThreadPoolExecutor class. The worker_function is defined to simulate a task. It takes a thread_id parameter and returns a result. We create a ThreadPoolExecutor with a specified number of maximum workers (in this case, 3). Tasks are submitted to the executor using the executor.submit() method. Each submit call schedules the execution of the worker_function with a specific thread_id.
We collect the resulting futures (representing the asynchronous results of the tasks) in a list called futures. We use concurrent.futures.as_completed(futures) to iterate through the futures as they are completed. The result() method retrieves the result of each future. Finally, we print the results and indicate when all threads have finished.
Python's support for multithreading offers several perks:
The judicious deployment of multithreading can make or break application performance.
Multithreading has undeniably transformed how developers approach concurrency in their applications. By efficiently leveraging CPU resources and optimizing execution times, multithreading offers a competitive edge in high-performance computing. It's vital, however, to understand its nuances and implement it judiciously. Overuse or misuse can lead to complications such as race conditions or deadlocks.
For professionals eager to elevate their Python skills, mastering multithreading becomes imperative. Moreover, as applications become complex and user demands increase, a deep comprehension of concurrency principles will be a cornerstone of robust software development. For those committed to continuous learning, platforms like upGrad provide courses that delve into advanced topics like these, ensuring professionals stay ahead in their careers.
1. Multithreading vs. multiprocessing in Python?
Multithreading involves multiple threads operating within one process, utilizing shared memory. It's suitable for tasks that require quick context switches. Multiprocessing, however, employs separate processes with individual memory spaces, ensuring true parallelism. This becomes especially vital for CPU-intensive operations where bypassing Python's Global Interpreter Lock (GIL) becomes crucial.
2. Advantages and disadvantages of multithreading in Python?
Multithreading offers numerous advantages such as parallel execution, improved application responsiveness, and efficient CPU and memory utilization. However, it's not without pitfalls. Drawbacks include potential race conditions due to shared memory access and the complexities in synchronization, which can introduce unexpected behaviors
3. What is the Python thread class?
Python's threading module provides a Thread class, used to create and handle threads. By instantiating the Thread class and providing a target function, one can spawn a new thread. The class offers various methods like start(), join(), and is_alive() to manage and monitor thread execution.
PAVAN VADAPALLI
Popular
Talk to our experts. We’re available 24/7.
Indian Nationals
1800 210 2020
Foreign Nationals
+918045604032
upGrad does not grant credit; credits are granted, accepted or transferred at the sole discretion of the relevant educational institution offering the diploma or degree. We advise you to enquire further regarding the suitability of this program for your academic, professional requirements and job prospects before enrolling. upGrad does not make any representations regarding the recognition or equivalence of the credits or credentials awarded, unless otherwise expressly stated. Success depends on individual qualifications, experience, and efforts in seeking employment.
upGrad does not grant credit; credits are granted, accepted or transferred at the sole discretion of the relevant educational institution offering the diploma or degree. We advise you to enquire further regarding the suitability of this program for your academic, professional requirements and job prospects before enr...