Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconTop 15 Deep Learning Interview Questions & Answers

Top 15 Deep Learning Interview Questions & Answers

Last updated:
21st Sep, 2023
Read Time
9 Mins
share image icon
In this article
Chevron in toc
View All
Top 15 Deep Learning Interview Questions & Answers

Although still evolving, Deep Learning has emerged as a breakthrough technology in the field of Data Science. From Google’s DeepMind to self-driving cars, Deep Learning innovations have left the whole world in awe. Companies and organizations around the globe are adopting Deep Learning tech to enhance business possibilities. The result – demand for skilled professionals in Deep Learning and Machine Learning is increasing at an unprecedented pace. In fact, Data Science is so hot in the market right now, that if you can build a career in Data Science, you are good to go!

Read on to know more about What is cnn, deep learning, and neural network. Additionally, discover deep learning interview questions to excel in your interview.

As you know, to land a successful job in Deep Learning, you must first nail the interview – one of the toughest challenges in the job-hunting process. 

Hence, we’ve decided to make it a little easier for you to get a headstart and compiled a list of ten most commonly asked Deep Learning interview questions!

Ads of upGrad blog

Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

Top 15 Deep Learning Interview Questions and Answers

  1. What is Deep Learning?

Deep Learning is the subset of Machine Learning that uses Artificial Neural Nets to allow machines to simulate decision making like humans. Neural Nets are inspired by the neuron structure of the human brain. Deep Learning has found numerous applications in areas like feature detection, computer vision, speech recognition, and natural language processing.

  1. What is Perceptron?

To understand this, you must first understand how a biological neuron works. A neuron consists of a cell body, an axon, and dendrites. 

While dendrites receive signals from other neurons, the cell body sums up all the inputs received, and the axon transmits the information compiled by the cell body as signals to other cells. 

Just like this, Perceptron in a neural net receives multiple inputs, applies various transformations and functions to those inputs, and finally combines the information to produce an output. It is a linear model used for binary classification. 

  1. What is the function of Weights and Bias?

To activate a node within a neural network, we have to use the following formula:

output = activation_function(dot_product(weights, inputs)+ bias)

Here, weights determine the slope of the classifier line, whereas bias enables the activation function to shift the slope either to the left or right. Generally, bias is treated as a weight input having the value x0.

  1. What is the role of an Activation Function?

An activation function is used to interject non-linearity into a neural network to help it learn complex tasks. It triggers or activates a neuron by calculating the sum of the weights and adding further bias to it. Without an activation function, a neural network will only be able to perform a linear function, that is, the linear combination of its input data.

  1. What is Gradient Descent?

Gradient Descent is an optimization algorithm that is used to minimize the cost function of a particular parameter by continually moving in the direction of steepest descent as determined by the negative of the gradient.

  1. What is a Cost Function?

A cost function (also referred to as “loss”) is a measure of the accuracy of the neural network in relation to a specific training sample and expected output. It determines how well a neural network performs as a whole. With neural networks, the goal always remains the same – to minimize the cost function or errors. 

  1. What is Backpropagation?

Backpropagation is a training algorithm used in multilayer neural networks to enhance the performance of the network. The method requires to move the error from one end of the network to all the weights contained inside the network, thereby facilitating efficient computation of the gradient and minimizing the error. Here’s how it works:

  • First, the training data is moved forward propagation to produce the output.
  • Use the target value and output value to calculate the error derivative in relation to the output activation.
  • Backpropagate the data for all the hidden layers and update the parameters (weights and biases). Continue this until the error is reduced to a minimum.
  • Now you can feed inputs into your model, and it can predict outputs more accurately.
  1. What is Data Normalization? Why is it important?

Data normalization is a preprocessing step during backpropagation. It aims to eliminate or minimize data redundancy. Data normalization helps rescale values to fit within a specific range to obtain better convergence for backpropagation – the mean of each data point is subtracted and divided by its standard deviation.

  1. How do you initialize weights in a neural network?

Basically, there are two ways for weight initialization – 

  • Initialize the weights to zero (0): By doing this, your model becomes just like a linear model, which means that all the neurons and all the layers will perform the same function, thereby hampering the productivity of the deep net.
  • Initialize the weights randomly: In this method, you assigning the weights randomly by initializing them very close to 0. Since different neurons perform different computations, this method ensures better accuracy.
  1. What are Hyperparameters?

Hyperparameters are variables whose values are set before the training process. They determine both the structure of a network and how it should be trained. 

There are many hyperparameters used in neural networks like Activation Function, Learning Rate, Number of Hidden Layers, Network Weight Initialization, Batch Size, and Momentum, to name a few.

Here are some cnn interview questions:

  1. What is a CNN? What are its different layers?

CNN or Convolutional Neural Network is a kind of deep neural networks primarily used for analyzing visual representations. These networks use a host of multilayer perceptrons that require minimal preprocessing. While neural networks use a vector as an input, in a CNN, the input is multi-channeled images. 

The different layers of CNN are as follows:

  • Convolutional Layer – This layer performs a convolutional operation to create many smaller picture windows to parse the data.
  • ReLU Layer – This layer introduces non-linearity to the network. It changes all the negative pixels to zero.
  • Pooling Layer – This layer performs a down-sampling operation to reduce the dimensionality of each feature map.
  • Fully Connected Layer – This layer recognizes and classifies all the objects present in the sample image.
  1. What Is CNN Pooling, and How Does It Operate?

Pooling is used to scale down a CNN’s spatial dimensions. The dimensionality is decreased by down-sampling processes, and a pooled feature map is produced by overlaying a filter matrix over the input matrix.

  1. What does CNN mean when it refers to valid padding and the same padding?

When padding is not necessary, it is utilised as valid padding. After convolution, the output matrix will be (n – f + 1) X (n – f + 1). 

The same padding is used here, covering the output matrix in padding elements. It will have similarities with the input matrix’s dimensions.

Here are some neural network interview questions:

  1. What is a Neural Network?

Neural networks are simplified versions of our brain’s neurons, that simulate how people learn.

Three network layers make up the most popular neural networks:

  • A base layer
  • A hidden layer (the most crucial layer where feature extraction occurs and modifications are made to train more quickly and perform better)
  • A layer of output

There are “nodes,” or neurons, on each sheet that carry out different functions. Deep learning algorithms like CNN, RNN, GAN, and others employ neural networks.

  1. What benefits do neural networks offer?
Ads of upGrad blog

These are some benefits of neural networks:

  • Neural networks are quite flexible and may be applied to much more complicated challenges as well as classification and regression issues. 
  • Additionally, neural networks are very scalable. Any number of layers, each with a unique set of neurons, is possible.
  • It has been demonstrated that neural networks produce the greatest results when there are a lot of data points. With non-linear data, including pictures, text, and other types, they work well. Any information that may be converted into a numerical value can be subject to their use.
  • Once taught, neural network modes produce results quite quickly. They save time as a result.
  1. What is the meaning of the term weight initialization in neural networks?

Weight initialization is one of the key components of neural networking. A network can not evolve if the initialization of the weights is poor. A good weight initialization, on the other hand, contributes to faster convergence and a lower total error. Biases may be started out from zero. The weights should generally be set so that they are near zero but not too low.

So, that’s 15 fundamental Deep Learning questions your interviewer will probably ask you during your DL interview. You must prepare the above interview questions on deep learning properly to excel in your interview. However, just reading up on interview questions isn’t enough to crack a job interview – you must possess in-depth knowledge of the field. The best course of action would be to sign up for a Deep Learning and Machine Learning certification program. These programs are designed to teach you the a-z of both ML and DL.

Prashant Kathuria is currently working as a Senior Data Scientist at upGrad. He describes himself as a data freak and others working with him will agree. Working in Data since more than 3 years in Product companies has taught him that data of today is gold of tomorrow. You will find him brainstoring about new things, or reading about upcoming technologies in his free time.
Get Free Consultation

Selectcaret down icon
Select Area of interestcaret down icon
Select Work Experiencecaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Frequently Asked Questions (FAQs)

1What are the skills required to do well as a deep learning engineer?

A deep learning engineer must have excellent engineering, technical, and analytical abilities, as the term implies. Knowing and utilizing multiple neural network architectures such as fully connected networks, CNNs, and RNNs, as well as understanding and using numerous neural network designs such as fully connected networks, CNNs, and RNNs, are required abilities for the deep learning engineer position. A deep learning engineer is in charge of deployment tasks and code conversions, thus he or she must have strong programming abilities and a thorough understanding of prototyped and production code. Every career, without a doubt, needs excellent interpersonal skills. As a result, you should be a fluid communicator with your clients and co-workers.

2Which tools are required by a deep learning engineer?

A deep learning engineer is responsible for completing subtasks such as deployment, data engineering, and modelling. They employ several tools to make their work simpler and save time. Python and associated packages such as Numpy, Pandas, Pytorch, and others are used for modelling subtasks. Various programming languages, such as Java, C, and C++, are used to convert codes, depending on the requirements. Deployment duties are carried out using a variety of cloud technologies, including AWS, GCP, and Azure. Platforms such as Jupyter Notebook, Sublime, and JIRA are utilized to keep collaboration on track and streamline the workflow.

3Is mathematics required to do well in the deep learning field?

The field of deep learning demands that you should be good at solving analytical and technical problems. You do not have to be a math wizard to do well in this field, but you should definitely know the basic concepts of algebra, calculus, statistics, and probability. Knowing the basic concepts would only help you to make the work easier.

Explore Free Courses

Suggested Blogs

Top 5 Natural Language Processing (NLP) Projects & Topics For Beginners [2024]
What are Natural Language Processing Projects? NLP project ideas advanced encompass various applications and research areas that leverage computation
Read More

by Pavan Vadapalli

30 May 2024

Top 8 Exciting AWS Projects & Ideas For Beginners [2024]
AWS Projects & Topics Looking for AWS project ideas? Then you’ve come to the right place because, in this article, we’ve shared multiple AWS proj
Read More

by Pavan Vadapalli

30 May 2024

Bagging vs Boosting in Machine Learning: Difference Between Bagging and Boosting
Owing to the proliferation of Machine learning applications and an increase in computing power, data scientists have inherently implemented algorithms
Read More

by Pavan Vadapalli

25 May 2024

45+ Best Machine Learning Project Ideas For Beginners [2024]
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

21 May 2024

Top 9 Python Libraries for Machine Learning in 2024
Machine learning is the most algorithm-intense field in computer science. Gone are those days when people had to code all algorithms for machine learn
Read More

by upGrad

19 May 2024

Top 15 IoT Interview Questions & Answers 2024 – For Beginners & Experienced
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

19 May 2024

40 Best IoT Project Ideas & Topics For Beginners 2024 [Latest]
In this article, you will learn the 40Exciting IoT Project Ideas & Topics. Take a glimpse at the project ideas listed below. Best Simple IoT Proje
Read More

by Kechit Goyal

19 May 2024

Top 22 Artificial Intelligence Project Ideas & Topics for Beginners [2024]
In this article, you will learn the 22 AI project ideas & Topics. Take a glimpse below. Best AI Project Ideas & Topics Predict Housing Price
Read More

by Pavan Vadapalli

18 May 2024

Image Segmentation Techniques [Step By Step Implementation]
What do you see first when you look at your selfie? Your face, right? You can spot your face because your brain is capable of identifying your face an
Read More

by Pavan Vadapalli

16 May 2024

Schedule 1:1 free counsellingTalk to Career Expert
footer sticky close icon