Blog_Banner_Asset
    Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconMachine Learning with R: Everything You Need to Know in 2024

Machine Learning with R: Everything You Need to Know in 2024

Last updated:
20th Jun, 2023
Views
Read Time
8 Mins
share image icon
In this article
Chevron in toc
View All
Machine Learning with R: Everything You Need to Know in 2024

R is a powerful programming language that has a unique software environment that is available for free usage of statistical computing and graphics. This capability makes it amongst the most widely used languages for not only statistical computing but data analysis as well.

The development of R happened in the early 90s and since then its user interface has undergone several improvements. It was initially a rudimentary text editor that turned into interactive R Studio a little later. Its most recent expedition with Jupyter Notebooks has been seen as a significant step in its nearly three-decade-long journey. 

The improvements that have been made to R over the years have been due to the contributions made by the community of R users that are spread across the length and breadth of this world. Many powerful packages have continuously been added to this language that has made it such a popular language amongst worldwide machine learning and data science communities. Some of the packages include rpart, readr, MICE, caret, and others. We will discuss how a few of these packages play an important role in the implementation of machine learning in R.

Check out: 6 Interesting R Project Ideas For Beginners

Ads of upGrad blog

Overview of Machine Learning

As you would already know, machine learning algorithms are broadly classified into two types – supervised machine learning (SML) algorithms and unsupervised machine learning (UML) algorithms. Supervised machine learning algorithms are those that are presented using inputs with labels, which make an indication of the desired output. SML algorithms are further divided into regression algorithms that have a numerical output and classification algorithms that have a categorical output. On the other hand, unsupervised learning algorithms are those that don’t have labeled inputs. The focus here is to detect the data structure in unlabelled input. 

You will also come across semi-supervised learning algorithms and reinforcement learning algorithms as you deepen your study of machine learning and the problems it can be used to solve.

Read more: Everything You Should Know About Unsupervised Learning

How Machine Learning Works?

Machine learning algorithms extract patterns and relationships from data to make predictions or take action. Frequently, the process includes the following steps:

  • Gathering pertinent data for analysis through data collection.
  • Cleaning and preparing the data for analysis is known as data preprocessing.
  • Choosing the most pertinent features or variables for the model is known as feature selection.
  • Forming data into a machine learning algorithm to create a prediction model is called model training.

Model evaluation: Analysing the trained model’s performance using a variety of indicators.

Model deployment: Making predictions on fresh, unresearched data using the learned model.

Classification of Machine Learning

The two primary categories of machine learning are unsupervised and supervised.

Supervised learning is the process of developing a model using tagged data with a predetermined desired outcome. It attempts to predict or categorize upcoming data based on the patterns found in the training data.

Finding patterns or structures in unlabeled data without preset outcomes is unsupervised learning. For tasks involving exploratory analysis or clustering, it is commonly employed.

Types of Machine Learning Problems

Machine learning problems can be broadly classified into the following types:

Regression: Predicting a constant value based on input features, such as predicting house prices based on location, size, and amenities.

Classification: Assigning predefined labels or classes to data instances, like categorizing emails as spam or legitimate.

Clustering: Grouping similar data instances based on their inherent patterns or similarities.

Dimensionality reduction: Reducing the number of input features while preserving essential information is useful for visualization and improving computational efficiency.

Top Machine Learning and AI Courses Online

Example of Machine Learning Problems

Machine learning can be applied to a wide range of problems, such as:

Spam email classification: Predicting whether an email is spam based on content and other features.

Customer churn prediction: Identifying customers likely to cancel their subscriptions or stop using a service.

Stock price forecasting: Predicting future stock prices based on historical data and market indicators.

Image recognition: Classifying images, such as identifying objects or recognizing faces.

Is R right for machine learning?

A lot of people think that R is only good for statistical computing. However, they soon realize their mistake. There are several provisions in R that can make the implementation of machine learning algorithms much simpler and faster. 

R is amongst the most preferred languages for data science projects. It comes with visualization features that you can associate with other languages. These features help in exploring the data in the right manner before it is sent to an automated learning algorithm for further application and at the same time, evaluating learning algorithm results. 

Popular AI and ML Blogs & Free Courses

Packages to implement machine learning algorithms in R

1. Multivariate imputation by chained equations or MICE package is mostly used to implement a method that is capable enough to handle missing data. It creates multiple replacement values related to missing data. In this method, there is a separate model that is attributed or assigned to every incomplete or missing variable.

You can now easily associate it with Fully Conditional Specification. MICE can be used to assign a mix of binary, continuous, ordered categorical, and unordered categorical data. It can attribute two-level data in continuous form and use passive attribution to maintain the required consistency. Attribution quality is examined by implementing several diagnostic plots.

2. rpart package is used to perform recursive portioning in decision trees, classification, and regression algorithms. This procedure is carried out in two simple steps. The result of this procedure is a binary tree. Plotting of results, which are achieved with the help of rpart, is done by calling the plot function. rpart can be used to perform classification as well as regression. It helps in understanding the variance that is using the independent variables to impact the dependent ones.

3. The random forest package or approach sees the creation of several decision trees. Each one of these trees is fed with observations. The final output is determined by the outcome that most commonly appears with different observations. 

4. The caret package is short for classification and regression training. It is used to make predictive modeling much simpler than it usually is. You can use caret to conduct controlled experiments to identify optimal parameters. A few tools that you will have access to when using this package include model tuning, data pre-processing, feature selection, and data splitting amongst others. 

5. You can use the e1071 package to implement Support Vector Machines (SVM), Naïve Bayes, Bagged Clustering, and Fourier Transform amongst other machine learning algorithms. SVM is one of e1071’s best features. It allows users to work on data that can’t be separated on the dimension that is made available to them. Users need the dimensions to carry out regression or classification on dimensions that are higher than the given ones. 

6. The nnet package is an add-on of the R language that prepares the groundwork for creating neural network classifiers. You can create just a single layer of nodes with this package. It simplifies all the steps that are a part of the neural network creation process, including data preparation, evaluation of the model’s accuracy, and making predictions. 

Know more: Best Programming Languages for Machine Learning

Trending Machine Learning Skills

Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

Advantages of Implementing Machine Learning Using R Language

Introduction to machine learning with R language offers several advantages:

Rich ecosystem: R provides vast packages specifically designed for machine learning, making it easier to develop and deploy models.

Statistical capabilities: R is renowned for its extensive statistical capabilities, allowing for in-depth analysis and interpretation of data.

Visualization: R offers powerful data visualization libraries, enabling the creation of informative and visually appealing plots and charts.

Integration: R can easily integrate with other programming languages and tools, facilitating seamless workflows and collaborations.

Community support: R has a vibrant and supportive community, providing access to many resources, tutorials, and expertise.

Application of R in Machine Learning

R is extensively used in various machine learning applications, including:

Predictive modelling: R enables the development of predictive models for forecasting, risk assessment, and recommendation systems.

Natural language processing: R provides tools for processing and analyzing textual data, enabling sentiment analysis, text classification, and language generation.

Image recognition: R can be used for training models to recognize patterns and objects in images, facilitating tasks like image classification and object detection.

Anomaly detection: R offers algorithms for identifying anomalous patterns or outliers in data, useful for fraud detection and quality control.

Using R for k-Nearest Neighbors (KNN)

An efficient machine learning method is the k-Nearest Neighbours (KNN) algorithm. The steps to implement KNN in R are as follows:

Step One: Get Your Data

You require a dataset with input features and related labels before you can use KNN. Data can be retrieved from a variety of sources, including your own data collection activities, public repositories, and APIs.

Step Two: Know Your Data

It’s essential to comprehend the properties of your data before beginning the modelling procedure. Determine missing numbers, outliers, or any potential preprocessing needs by analysing the data structure.

Step Three: Where to Go Now?

After becoming familiar with the data, decide on the objectives of your machine learning project. Decide on the overarching strategy, the problem you intend to tackle, and the relevant evaluation measures.

Step Four: Prepare Your Workspace

Install the relevant packages and load the necessary libraries to set up your R environment. Making a designated workspace improves code organization and promotes reproducibility.

Step Five: Prepare Your Data

For your machine-learning model to receive high-quality input, data preprocessing is essential. In this step, missing values are handled, features are scaled, categorical variables are encoded, and the data is divided into training and testing sets.

Step Six: The Actual KNN Model

Using the training set provided in this phase, you will train your KNN model. By identifying the most similar training instances based on their feature values, the KNN algorithm classifies fresh data points.

Step Seven: Evaluation of Your Model

Ads of upGrad blog

Utilize relevant assessment criteria, such as accuracy, precision, recall, or area under the ROC curve, to rate the performance of your trained KNN model. You can learn how successfully your model generalizes to fresh, untested data at this step.

Conclusion

In this blog, we discussed the relationship between R and machine learning and how this programming language can be used to implement several machine learning algorithms. 

If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.

Profile

Pavan Vadapalli

Blog Author
Director of Engineering @ upGrad. Motivated to leverage technology to solve problems. Seasoned leader for startups and fast moving orgs. Working on solving problems of scale and long term technology strategy.
Get Free Consultation

Selectcaret down icon
Select Area of interestcaret down icon
Select Work Experiencecaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Explore Free Courses

Suggested Blogs

45+ Best Machine Learning Project Ideas For Beginners [2024]
329925
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

21 May 2024

Top 15 IoT Interview Questions & Answers 2024 – For Beginners & Experienced
64849
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

19 May 2024

40 Best IoT Project Ideas & Topics For Beginners 2024 [Latest]
765490
In this article, you will learn the 40Exciting IoT Project Ideas & Topics. Take a glimpse at the project ideas listed below. Best Simple IoT Proje
Read More

by Kechit Goyal

19 May 2024

Top 22 Artificial Intelligence Project Ideas & Topics for Beginners [2024]
414952
In this article, you will learn the 22 AI project ideas & Topics. Take a glimpse below. Best AI Project Ideas & Topics Predict Housing Price
Read More

by Pavan Vadapalli

18 May 2024

Image Segmentation Techniques [Step By Step Implementation]
64012
What do you see first when you look at your selfie? Your face, right? You can spot your face because your brain is capable of identifying your face an
Read More

by Pavan Vadapalli

16 May 2024

6 Types of Regression Models in Machine Learning You Should Know About
283369
Introduction Linear regression and logistic regression are two types of regression analysis techniques that are used to solve the regression problem
Read More

by Pavan Vadapalli

16 May 2024

How to Make a Chatbot in Python Step By Step [With Source Code]
31218
Creating a chatbot in Python is an essential skill for modern developers looking to enhance user interaction and automate responses within application
Read More

by Kechit Goyal

13 May 2024

Artificial Intelligence course fees
5801
Artificial intelligence (AI) was one of the most used words in 2023, which emphasizes how important and widespread this technology has become. If you
Read More

by venkatesh Rajanala

29 Feb 2024

Artificial Intelligence in Banking 2024: Examples & Challenges
6681
Introduction Millennials and their changing preferences have led to a wide-scale disruption of daily processes in many industries and a simultaneous g
Read More

by Pavan Vadapalli

27 Feb 2024

Schedule 1:1 free counsellingTalk to Career Expert
icon
footer sticky close icon