Blog_Banner_Asset
    Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconData Sciencebreadcumb forward arrow iconWhat Can Data Science Do to Help Prevent Pandemics in the Future?

What Can Data Science Do to Help Prevent Pandemics in the Future?

Last updated:
19th May, 2020
Views
Read Time
8 Mins
share image icon
In this article
Chevron in toc
View All
What Can Data Science Do to Help Prevent Pandemics in the Future?

We are currently confronting a worldwide emergency. From a public health point of view, to fight an epidemic, authorities must take various actions, for example, creating effective awareness, setting guidelines for health experts, targeting contamination clusters, limiting population developments, and allocating scarce resources. 

Quick and accurate data analytics that can pinpoint outbreaks and anticipate movement is critical to fighting irresistible infections. Historical methodologies, such as investigator reports and hospital records, are dependable yet moderate at best at forecasting. There is a growing belief that more current methodologies, including cell-phone tracking and data mining of search engines, and social media, can help give a quicker, progressively refined, picture of where sicknesses are unfurling and where they may spread next.

Data science can play an important role in breaking down the large-scale testing of individuals by connecting these outcomes with the anonymized health attributes of hospitalized patients. This would enable us to comprehend key risk factors and better protect individuals who are at the highest risk of infection. The more information there is, the more precise these predictions could be.

Explore our Popular Data Science Courses

Power of Prediction

Innovation of prediction has changed numerous enterprises over the last 20 years. Organizations like BlueDot and Metabiota utilize a scope of natural language processing (NLP) algorithms to screen news outlets and official healthcare reports in various languages around the globe. Their predictive devices can likewise draw on air-travel information to survey the risk that transit hubs may see contaminated individuals either showing up or leaving.

Utilizing different sources of big data, machine learning models could be trained to quantify a person’s clinical risk of developing severe disease if they contract a serious infection such as COVID-19: what is the likelihood that they would require specialised care, for which the assets are limited? How likely are they to succumb to the illness? Such data could incorporate people’s fundamental medical histories. 

The outcomes are sensibly accurate. For instance, Metabiota’s most recent public report on February 25 anticipated that on 3 March, there would be a total of 1,27,000 COVID-19 cases around the world. This number was overshot by around 30,000, yet Mark Gallivan, the then Director of Data Science of the company, said that this was still within the room of error. It additionally recorded the nations that are most likely to report new cases, which included China, Italy, Iran and the United States of America. 

Google’s DeepMind AI system is being used to distinguish the attributes of the virus, which may help understand how it functions. This data would prove to be helpful in determining what medications to seek. Others have incorporated the technology developed by the UK-based bioinformatics startup BenevolentAI, which is using artificial intelligence to find promising existing treatments for different diseases, which could be effective in treating COVID-19. 

China’s usage of SenseTime’s facial recognition technology and temperature detection software to detect individuals who may have a fever and may be bound to have the infection has helped as well. A similar innovation powers the ‘smart helmets’ that are utilized by the authorities in the Sichuan territory to detect individuals with fever. 

The Chinese government has additionally built a monitoring system called Health Code that employs big data to identify and assess the risk of every individual depending on their travel history, the amount of time they have spent in infection hotspots, and potential exposure to individuals with the virus. Residents are assigned a color code (red, yellow, or green), which they can obtain by means of the mainstream applications WeChat or AliPay to show whether they should be isolated or permitted to go out in the public.

Unlike medical tests that are scarce, costly, and are often delivered with delays, this clinical-data-driven digital personalization approach can be applied rapidly and is quite easy to scale. It would permit better and more attractive asset allocation in case of rare medical equipment, for example, test units, protective masks, and hospital beds.

It could empower us with the correct models and enable more secure de-quarantining at a much faster rate than allowed by the current test-track-segregated best practices for COVID-19, under which anybody infected and their contacts would remain in confinement, regardless of whether they are in general safe or are showing symptoms of severe disease.

Top Essential Data Science Skills to Learn

Our learners also read: Free Online Python Course for Beginners

upGrad’s Exclusive Data Science Webinar for you –

Watch our Webinar on How to Build Digital & Data Mindset?

 

Mining for Data

The human mobility information and telecom data that was made use of during the Ebola outbreak in West Africa and has additionally been investigated by the UNICEF Innovation Lab, Flowminder, and other organizations. The underlying primary objective is to comprehend human mobility trends with respect to lockdown measures and assess the danger of disease progressing in a particular region. 

On ground, by using an application of  EPI Info Viral Hemorrhagic Fever this Disease can be Control, an open-source program that identifies those exposed to virus and builds a huge database of patient data that incorporates the name, gender, age, location, medical history & numerous other identifiers. 

In the application of big data analytics, the Swedish firm name Flowminder utilized 2013 phone records in Senegal to overlay past outbreaks of infection on traffic patterns to foresee the movement and growth of Ebola within the nation. While a significant part of the response to Ebola is established in physical infrastructure & operations, it is clear that the response is augmented by the ability to leverage data. 

A second encouraging road is the data mining of social media and search engine activity, which can rapidly show where an outbreak is occurring. However, data from social sharing and search engine queries could be misleading and ought not to be trusted exclusively. Rather, healthcare organizations are consolidating information from these sources with traditional medical data sets and using medical ability when dissecting trends. Daniel Bausch, the Director of the UK Public Health Rapid Support Team, sees incredible potential in the data sets gathered from social media.

Recently, the Big Data Laboratory at Nizhny Novgorod Development Strategy Project Office developed a mathematical model to predict the spread of COVID-19. The model used the information on most nations and districts that have published COVID-19 insights, including 297 regions of the world and 21 territories in Italy. 

The team continually observed Russian and global research on COVID-19. This implies that they could gather the information for the model from everywhere in the world, both aggregated by nation, and distributed by region and smaller territories. The analysis incorporated a few dozen urban cities, in order to distinguish the ones that have epidemiological parameters that are closest to their own (policies, population size and density). The model so developed helps in forecasting the pandemic with an accuracy of 2.5%.

One approach to adopt is to set up independent ethical committees or data trusts. Their job would be to create data governance mechanisms to discover the harmony between contending public interests while ensuring individual security. 

Also read: Productive Things To Do in Lockdown

Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.

Read our popular Data Science Articles

Conclusion

Now, as we develop new advances that are expected to collect, disseminate, and utilize information to help in the battle against any pandemic, we also need to ensure they respect ethical best practices. Indeed, even amid an emergency, we need to follow data security guidelines and guarantee that the information is being exploited ethically.

Getting pioneers in governments, businesses, and medical services to trust these tools would fundamentally change how rapidly we respond to disease outbreaks.

If you are curious to learn about data science, check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.

Profile

Priya Dialani

Blog Author
A commerce graduate from the University of Pune who pursued Post Graduation Diploma in Management specialising in Business Entrepreneurship (PGDM-BE) from Entrepreneurship Development Institute of India is a business owner with a flair for writing, especially about technology.

Frequently Asked Questions (FAQs)

1How can search engines help in the prevention of pandemic?

Decision-makers can collect user demands and hotspots in real-time using big data from search engines to aid in pandemic prevention choices. The information obtained from searches may be used to help avoid and control pandemics by better understanding consumer demands during the outbreak, material allocation, post-pandemic product innovation, and industry development. Navigation and search engine data, like social media data, are major sources of disease prevention and they control big data. They have nothing to do with medical therapy or illness diagnosis, but their prospective information can represent disease progression and draw people's attention to certain conditions.

2How can visual analysis technology contribute towards pandemic prevention?

It is possible to recognize correlations among large datasets using visual analysis technologies, allowing investigators to get more intuitive visual cognition and efficient decision-making help. Currently, the government and key policymakers can use the aforementioned big data sources to undertake a visual analysis of pandemic situation monitoring, medical resources, hospital enterprises, and close contact screening in order to make choices. All governments use visual analyses of big data to visualize critical COVID indicators such as case data, virus dispersion, pandemic situation trends, and hotspot reports in real-time. The technology can fulfil the public's right to know to the greatest extent possible, and it allows policymakers to have a comprehensive understanding of the pandemic situation and help in scientific decision-making.

3What role can NLP play in the prevention of the pandemic?

A government might improve speech recognition accuracy by using deep learning for Natural Language Processing (NLP). Such recognition includes entity recognition, automated text categorization of sensitive material, papers, reports, news, and so on. For monitoring public attitudes on the Internet, early warning systems, information communication mechanisms, rumor-mining, the tide of public opinion analysis, and public appeasement, this information may be obtained via the Internet and social networking platforms. Natural language processing (NLP) technology can help with early warning, rumor dissemination, tracking disease dynamics, social hot spots, and information push in the prevention and control of pandemic.

Explore Free Courses

Suggested Blogs

Top 12 Reasons Why Python is So Popular With Developers in 2024
99361
In this article, Let me explain you the Top 12 Reasons Why Python is So Popular With Developers. Easy to Learn and Use Mature and Supportive Python C
Read More

by upGrad

31 Jul 2024

Priority Queue in Data Structure: Characteristics, Types & Implementation
57691
Introduction The priority queue in the data structure is an extension of the “normal” queue. It is an abstract data type that contains a
Read More

by Rohit Sharma

15 Jul 2024

An Overview of Association Rule Mining & its Applications
142465
Association Rule Mining in data mining, as the name suggests, involves discovering relationships between seemingly independent relational databases or
Read More

by Abhinav Rai

13 Jul 2024

Data Mining Techniques & Tools: Types of Data, Methods, Applications [With Examples]
101802
Why data mining techniques are important like never before? Businesses these days are collecting data at a very striking rate. The sources of this eno
Read More

by Rohit Sharma

12 Jul 2024

17 Must Read Pandas Interview Questions & Answers [For Freshers & Experienced]
58170
Pandas is a BSD-licensed and open-source Python library offering high-performance, easy-to-use data structures, and data analysis tools. The full form
Read More

by Rohit Sharma

11 Jul 2024

Top 7 Data Types of Python | Python Data Types
99516
Data types are an essential concept in the python programming language. In Python, every value has its own python data type. The classification of dat
Read More

by Rohit Sharma

11 Jul 2024

What is Decision Tree in Data Mining? Types, Real World Examples & Applications
16859
Introduction to Data Mining In its raw form, data requires efficient processing to transform into valuable information. Predicting outcomes hinges on
Read More

by Rohit Sharma

04 Jul 2024

6 Phases of Data Analytics Lifecycle Every Data Analyst Should Know About
82932
What is a Data Analytics Lifecycle? Data is crucial in today’s digital world. As it gets created, consumed, tested, processed, and reused, data goes
Read More

by Rohit Sharma

04 Jul 2024

Most Common Binary Tree Interview Questions & Answers [For Freshers & Experienced]
10561
Introduction Data structures are one of the most fundamental concepts in object-oriented programming. To explain it simply, a data structure is a par
Read More

by Rohit Sharma

03 Jul 2024

Schedule 1:1 free counsellingTalk to Career Expert
icon
footer sticky close icon