Blog_Banner_Asset
    Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconData Sciencebreadcumb forward arrow icon7 Advantages of using Python for Data Science

7 Advantages of using Python for Data Science

Last updated:
25th Jul, 2019
Views
Read Time
7 Mins
share image icon
In this article
Chevron in toc
View All
7 Advantages of using Python for Data Science

Can you guess which is the most widely used language in the Data Science universe? Well, judging by the title of this article, you must already know what it is, and if you’re still wondering – it is Python.

According to a StackOverflow analysis,

“The fastest-growing use of Python is for data science, machine learning, and academic research.”

Behind this massive fan-following of Python lie numerous reasons. The primary reason being that Python is super easy to learn. When it comes to Data Science, Python is a nifty tool with a whole range of benefits. Since it is open-source, it is flexible and continuously improving. Plus, Python has an array of useful libraries and not to forget that it can be integrated with other languages (like Java) as well as existing structures. Long story short – Python is an excellent Data Science tool.

We’ll give you 6 strong reasons to support our claim!

  1. Simplicity!

When talking about Python’s popularity in both the programming and Data Science community, the first thing that comes to mind is its simplicity. One of the best features of Python is its inherent simplicity and readability that makes it a beginner-friendly language. Its has a neat and lucid syntax, thereby offering a shorter learning curve than most other languages. In fact, you could write a program much faster in Python that you probably could with other languages such as C++ or Java.

Explore our Popular Data Science Certifications

Python is time-savvy as it allows you to get straight to the research part without having to spend hours reading the documentation. Today, Python is extensively used for data analysis, statistical analysis, web development,  text processing, and so much more.

5 Reasons to Choose Python for Data Science
  1. Libraries – there’s one for every need!

While Python’s simplicity makes it the first choice for many, its assortment of fantastic libraries makes it all the more appealing to Data Science professionals. Over the years, Python has been made richer with the inclusion of libraries that enhance its functionality even further. There are so many libraries that you are sure to find one tailor-made to fit your Data Science needs.

Let’s take a look at some of the most popular Python libraries –

NumPy is one of the earliest libraries to find a use case in Data Science. It incorporates high-level mathematical functions that operate on multi-dimensional arrays and matrices and is excellent for scientific computing.

Our learners also read: Python online course free!

Pandas was built on top of NumPy. It is Python’s data analysis library and can be used for everything – from importing data from Excel sheets to processing datasets for time-series analysis.

SciPy is the scientific equivalent of NumPy. It has all the tools required for numerical integration and effective analysis of scientific data. Matplotlib is a 2D-plotting library that comes equipped with all the tools necessary for offers data visualization. Scikit-Learn and PyBrain are ML libraries equipped with modules for developing neural networks.

Apart from these libraries, there are also other libraries like SymPy (statistical applications); Shogun, PyLearn2 and PyMC (machine learning); Bokeh, ggplot, Plotly, prettyplotlib, and seaborn (data visualization and plotting), and csvkit, PyTables, SQLite3 (data formatting and storage), to name a few.

  1. Multi-paradigm approach.

A great thing about Python is that unlike OOP languages, it isn’t limited in approach – it is a multi-paradigm programming language. So, for instance, while in Java, you’d be required to create a separate OO class for printing ‘Hello World,’ you do not have to do so in Python. Having a  multi-paradigm approach, Python supports functional, procedural, and both object-oriented programming and aspect-oriented programming styles.

  1. Enterprise Application Integration (EAI).

Python is an excellent tool for Enterprise Application Integration (EAI). As we mentioned earlier, Python is highly embeddable in applications, even those written in other programming languages. Thus, it allows for easy integration with other languages, thereby making the web development process easier. For instance, it can invoke CORBA/COM components and also directly calling from and to Java, C++ or C code. Python’s strong integration bonding with Java, C, and C++ makes it a great choice for application scripting.

Furthermore, Python is also a useful tool for software testing owing to robust text processing and integration capabilities. It comes with its unique unit testing framework and can be used for developing sophisticated GUI desktop applications as well.

Top Data Science Skills to Learn

  1. The Jupyter Notebook.

Working with Python, every programmer is familiar with The Jupyter Notebook. It is an open-source web application that allows coders to write expressive code. The Jupyter Notebook is a handy tool for Data Science and ML. It enables you to exhibit your findings and embed the results (visualizations) in the same document as your code.

Read our popular Data Science Articles

Among the many services revolving around The Jupyter Notebook is the Google Colaboratory that grants you free cloud computing perks along with access to high-performance GPUs to run the Jupyter Notebook. Since Google Colab is synced directly with Google Drive apps, you can store your data and notebooks on your Google Drive.

upGrad’s Exclusive Data Science Webinar for you –

How upGrad helps for your Data Science Career?

 

  1. Community – there’s always someone to rely on!

What could be more awesome about Python than the things we’ve already mentioned so far?

Earn data science certification from the World’s top Universities. Join our Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.

The Python Community.

For better or for worse, the Python community will always be there for you. There’s no issue, no problem, or no question, that won’t be solved or answered by Python enthusiasts and volunteers. All you need to do is ask. This is one of the most commendable features of open-source communities – they are always open to discussions.

If you are stuck somewhere in your code or on something, you can be sure that someone somewhere has faced such a problem before. So, there’s always a solution. You can connect with Python experts and community members on online platforms like Reddit and StackOverflow, or you can attend meetups/conferences and other gatherings.

To sum up, Python has proven to be a game-changer for Data Science. It is packed with such useful tools and features that make it the first choice of many Data Scientists and Data Analysts everywhere.

While we’re convinced that the above reasons are enough to show you the advantages of Python for Data Science, you’ve got to test it for yourself to believe it!

Profile

Rohit Sharma

Blog Author
Rohit Sharma is the Program Director for the UpGrad-IIIT Bangalore, PG Diploma Data Analytics Program.

Frequently Asked Questions (FAQs)

1Why should we use Pandas and not NumPy?

Pandas, like NumPy, is one of the most popular Python libraries for data science. It provides high-performance structures and easy-to-use data analysis tools. Pandas provides an in-memory 2d table object named Dataframe, unlike the NumPy library, which provides objects for multi-dimensional arrays. When the number of rows is 500K or more, Pandas perform better. When it comes to cleaning, converting, manipulating, and analyzing data, Pandas is a game changer. Pandas, to put it simply, assist in the cleanup of the mess.

2What are the cons of using Python?

Python is a high-level language, thus it isn't as near to hardware as C or C++. It's only used infrequently for mobile development. Python is not a suitable choice for any memory-intensive activities. As a result, it isn't employed for that purpose. Python consumes a lot of RAM due to the data types' flexibility. Python's database access layer is discovered to be immature and unsophisticated. When large corporations are looking for a language that assures the seamless interaction of complicated legacy data, it functions as a huge roadblock. Python programmers encounter a number of challenges due to the language's architecture. Since the language is dynamically typed, it necessitates additional testing and also contains faults that only appear at runtime.

3When is the use of Jupyter Notebook most preferred?

The Jupyter Notebook is an open-source web tool that lets data scientists create and share documents with live code, equations, computational output, visualizations, and other multimedia elements, as well as explanatory text. The Jupyter Notebook has grown widespread among data scientists due to the growing popularity of open-source software in business as well as the rapid expansion of data science and machine learning. Data cleansing and transformation, numerical simulation, exploratory data analysis, data visualization, statistical modelling, machine learning, and deep learning are all possible with Jupyter Notebooks.

Explore Free Courses

Suggested Blogs

Python Free Online Course with Certification [2023]
116414
Summary: In this Article, you will learn about python free online course with certification. Programming with Python: Introduction for Beginners Lea
Read More

by Rohit Sharma

20 Sep 2023

Information Retrieval System Explained: Types, Comparison & Components
47830
An information retrieval (IR) system is a set of algorithms that facilitate the relevance of displayed documents to searched queries. In simple words,
Read More

by Rohit Sharma

19 Sep 2023

26 Must Read Shell Scripting Interview Questions & Answers [For Freshers & Experienced]
12993
For those of you who use any of the major operating systems regularly, you will be interacting with one of the two most critical components of an oper
Read More

by Rohit Sharma

17 Sep 2023

4 Types of Data: Nominal, Ordinal, Discrete, Continuous
284883
Summary: In this Article, you will learn about 4 Types of Data Qualitative Data Type Nominal Ordinal Quantitative Data Type Discrete Continuous R
Read More

by Rohit Sharma

14 Sep 2023

Data Science Course Eligibility Criteria: Syllabus, Skills & Subjects
42578
Summary: In this article, you will learn in detail about Course Eligibility Demand Who is Eligible? Curriculum Subjects & Skills The Science Beh
Read More

by Rohit Sharma

14 Sep 2023

Data Scientist Salary in India in 2023 [For Freshers & Experienced]
901399
Summary: In this article, you will learn about Data Scientist salaries in India based on Location, Skills, Experience, country and more. Read the com
Read More

by Rohit Sharma

12 Sep 2023

16 Data Mining Projects Ideas & Topics For Beginners [2023]
49039
Introduction A career in Data Science necessitates hands-on experience, and what better way to obtain it than by working on real-world data mining pr
Read More

by Rohit Sharma

12 Sep 2023

Actuary Salary in India in 2023 – Skill and Experience Required
899449
Do you have a passion for numbers? Are you interested in a career in mathematics and statistics? If your answer was yes to these questions, then becom
Read More

by Rohan Vats

12 Sep 2023

Most Frequently Asked NumPy Interview Questions and Answers [For Freshers]
24567
If you are looking to have a glorious career in the technological sphere, you already know that a qualification in NumPy is one of the most sought-aft
Read More

by Rohit Sharma

12 Sep 2023

Schedule 1:1 free counsellingTalk to Career Expert
icon
footer sticky close icon