Explore Courses
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Birla Institute of Management Technology Birla Institute of Management Technology Post Graduate Diploma in Management (BIMTECH)
  • 24 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Popular
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science & AI (Executive)
  • 12 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
University of MarylandIIIT BangalorePost Graduate Certificate in Data Science & AI (Executive)
  • 8-8.5 Months
upGradupGradData Science Bootcamp with AI
  • 6 months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
OP Jindal Global UniversityOP Jindal Global UniversityMaster of Design in User Experience Design
  • 12 Months
Popular
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Rushford, GenevaRushford Business SchoolDBA Doctorate in Technology (Computer Science)
  • 36 Months
IIIT BangaloreIIIT BangaloreCloud Computing and DevOps Program (Executive)
  • 8 Months
New
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Popular
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
Golden Gate University Golden Gate University Doctor of Business Administration in Digital Leadership
  • 36 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
Popular
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
Bestseller
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
IIIT BangaloreIIIT BangalorePost Graduate Certificate in Machine Learning & Deep Learning (Executive)
  • 8 Months
Bestseller
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in AI and Emerging Technologies (Blended Learning Program)
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
ESGCI, ParisESGCI, ParisDoctorate of Business Administration (DBA) from ESGCI, Paris
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration From Golden Gate University, San Francisco
  • 36 Months
Rushford Business SchoolRushford Business SchoolDoctor of Business Administration from Rushford Business School, Switzerland)
  • 36 Months
Edgewood CollegeEdgewood CollegeDoctorate of Business Administration from Edgewood College
  • 24 Months
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with Concentration in Generative AI
  • 36 Months
Golden Gate University Golden Gate University DBA in Digital Leadership from Golden Gate University, San Francisco
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Deakin Business School and Institute of Management Technology, GhaziabadDeakin Business School and IMT, GhaziabadMBA (Master of Business Administration)
  • 12 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science (Executive)
  • 12 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityO.P.Jindal Global University
  • 12 Months
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (AI/ML)
  • 36 Months
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDBA Specialisation in AI & ML
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
New
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGrad KnowledgeHutupGrad KnowledgeHutAzure Administrator Certification (AZ-104)
  • 24 Hours
KnowledgeHut upGradKnowledgeHut upGradAWS Cloud Practioner Essentials Certification
  • 1 Week
KnowledgeHut upGradKnowledgeHut upGradAzure Data Engineering Training (DP-203)
  • 1 Week
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
Loyola Institute of Business Administration (LIBA)Loyola Institute of Business Administration (LIBA)Executive PG Programme in Human Resource Management
  • 11 Months
Popular
Goa Institute of ManagementGoa Institute of ManagementExecutive PG Program in Healthcare Management
  • 11 Months
IMT GhaziabadIMT GhaziabadAdvanced General Management Program
  • 11 Months
Golden Gate UniversityGolden Gate UniversityProfessional Certificate in Global Business Management
  • 6-8 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
IU, GermanyIU, GermanyMaster of Business Administration (90 ECTS)
  • 18 Months
Bestseller
IU, GermanyIU, GermanyMaster in International Management (120 ECTS)
  • 24 Months
Popular
IU, GermanyIU, GermanyB.Sc. Computer Science (180 ECTS)
  • 36 Months
Clark UniversityClark UniversityMaster of Business Administration
  • 23 Months
New
Golden Gate UniversityGolden Gate UniversityMaster of Business Administration
  • 20 Months
Clark University, USClark University, USMS in Project Management
  • 20 Months
New
Edgewood CollegeEdgewood CollegeMaster of Business Administration
  • 23 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
KnowledgeHut upGradKnowledgeHut upGradBackend Development Bootcamp
  • Self-Paced
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 5 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
upGradupGradUI/UX Bootcamp
  • 3 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
upGradupGradDigital Marketing Accelerator Program
  • 05 Months

Career in Data Science: Different Job Roles, Salary, Skills, Steps to Become Data Scientist

Updated on 23 November, 2022

23.72K+ views
12 min read

Data is everywhere around us and it will only continue to amass as we move toward a technologically driven world. While data is extremely valuable, we are inundated with it, which poses a problem to extrapolate valuable information from it. Finding data that is useful can be like looking for a needle in a haystack- frustrating and time-consuming. To make sense of the mountain of data available to businesses, it is important that the data is made comprehensible and actionable. 

How do you achieve this feat? Simple. Through data science. Data science is an interdisciplinary field that employs mathematics, statistics, computing algorithms, advanced analytics, artificial intelligence (AI), and machine learning to extract useful information and insights (such as larger patterns and trends) from a large body of data or datasets. 

Harnessing the power of data science has become important for businesses to improve and grow. As a result, the demand for data science professionals has seen a meteoric rise in the recent past.

According to LinkedIn, careers in data science are witnessing a growth of 35% annual growth rate in the US. The demand is only set to increase in the future, and a career in data science is becoming a highly lucrative one. 

Before we delve deeper into the various aspects of data science as a career, let us first look at who is a data scientist. A data scientist is a computer professional possessing skills for collecting, analyzing, processing a large set of structured and unstructured data. In this time of computers, most organizations are collecting a huge amount of data in their daily operations.

In almost every interaction with technology, data is interchanged. A data scientist’s role is to analyze this data and interpret the results to implement them for the organizational benefits. If you want to gain expertise and get your dream data science job, check out our data science certifications.

In the modern world, about 2.5 quintillion bytes of data are processed every day. A data scientist can organize and analyze this huge amount of data to make it accessible to lead a profitable business. For example, an organization can use data science to remind its customer of habitual purchases. Suppose you order a shampoo every month, you may find a strategically placed deal around the same time of every month, prompting you to buy more. 

Data Scientists not only play a key role in business analysis, but they are also responsible for building data products and software platforms. Truly speaking, data science is a combination of computer science, statistics, and mathematics.

Considering all this, it is a good idea to think of a career in this dynamically expanding industry. Let’s begin by looking at some of the most popular data science career opportunities. 

Different Job Roles for Data Science Experts

Most companies are adopting data analysis for their growth. Data Scientists are in a growing demand not just in technology, but also in all other major sectors, including FMCG, logistics, and more. It is commendable to inscribe here that the five biggest companies viz. Google, Amazon, Apple, Microsoft, and Facebook have employed one-half of the total data scientists the world has.

Data science career opportunities are nonetheless, incredibly diverse. Opting to undertake a data science career will open up several career opportunities and job titles for you. 

Some of the lucrative Data Science carriers for the aspirants are:

Data Scientists

A Data Scientist explores various data patterns to measure the impact on an organization. A key role of a Data Scientist is the ability to explain the importance of data in a simpler method to be understood by others. They are supposed to have a statistical knowledge of different programming languages required for solving complex problems. 

upGrad’s Exclusive Data Science Webinar for you –

How upGrad helps for your Data Science Career?

Data Analyst

Analyzing data to figure out a market trend is the role of a Data Analyst. He helps in providing a clear picture of the company’s standing in the market. Once the desired goal is set by a company, a Data Analyst provides datasets to achieve the required goal. 

The role of a Data Analyst may change as per the requirement of a company. For instance, the marketing department may require their services for some time to understand consumer behavior and reactions to different marketing strategies. 

Data Engineer

Data Engineer works with the core of the organization and can be considered as the backbone of a company. They are the builder, designer, and manager of a large database. They are in charge of building data pipelines, enabling correct data flow, ensuring the data to reach the relevant departments.

A Data Engineer has to work in collaboration with other data experts to communicate results with his colleagues. In a nutshell, a data engineer has to share his insights with the company through data visualization, helping the organization grow. 

Read: Data Engineer Salary in India

Business Intelligence Analyst

A business intelligence analyst helps in analyzing the collected data to maximize the company’s efficiency, hence generating more profits. Their role is more technical in nature then analytical, requiring more knowledge of popular machines. They have to serve as a bridge between business and IT, helping them improve. 

Must read: Learn excel online free!

A Business Intelligence Analyst is required to possess the knowledge of a specific industry and industry trends.

Read more: Business Analysis Vs Business Intelligence: Differences Between BA & BI

Marketing Analyst

The role of a marketing analyst is to assist companies in their marketing division. They analyze and suggest which product to produce in large quantities and which product to discontinue. Monitoring customer satisfaction reports help in improving existing products and services. They decide which products to sell with the targeted customers and at which price. 

Read about: Data Scientist Salary in India

Data Architect

One of the most essential careers in data science is to become a data architect. A data architect designs, develops, and maintains a business’ data management systems. They are responsible for meeting the company’s database requirements and building them in keeping with internal and external regulations. 

Machine Learning Engineer

One popular role or career in data science, machine learning engineer, is primarily responsible for automating data analysis processes. They design and implement machine learning systems, research and optimise machine learning algorithms, and perform machine learning tests to monitor system performance and functioning. It has emerged as one of the most essential data science careers in recent times. 

Database Administrator

A database administrator is involved in maintaining and functioning of the organisation’s database system. They are responsible for the safe and secure management and storage of data and develop backups and recoveries solutions. To put it simply, they are responsible for the day-to-day functioning and management of a company’s database system. 

Skills required to build a Career in Data Science

A data scientist should have good acumen for analyzing data with excellent programming skills. They use a variety of skills, depending on the specific organization demand. 

Desirable skills for this career can be divided into two parts:

Technical Skills

You must be excellent in Mathematics, Computer Programming, and Statistics to be a successful data scientist.

Other technical skills needed are:

  • Programming – Proficiency in computer programming and coding languages
  • Analytical tools knowledge – SAS, HADOOP, Spark, and R, are the popular analytical tools, used by the data scientists
  • Unstructured Data Workability – Ability to manage unstructured data received from different channels

Non-Technical Skills

Most of the personal skills possessed by an individual are categorized under the non-technical section. They are: 

  • Strong business sense
  • Communication skills
  • Data intuition

Our learners also read: Free Python Course with Certification

How do I become a Data Scientist?

You should have a bachelor’s degree in data science or a related field to start your career as a Data Scientist. A certified course in data science is preferable to enter the market as a data scientist. A background in Mathematics and Statistics also increases the chances of being successful in this field. 

Even students of entirely different fields of education can pursue their career as a data scientist. If you have never written code, you can still become a data analyst with the virtue of your hard labor and learning commitment.

upGrad offers comprehensive courses in Data Science. The material is easy-to-understand and offered by experienced professionals in the field. We also offer special assistance by guidance counselors to help you decide the kind of career you should be seeking.

After completing our 12-18 months long course, you will become industry ready and are sure to get a well-paying job!

Learn more: How to Become a Data Scientist?

What Kind of Salary can you Expect in a Data Science Career?

Data Science is high in demand and, therefore, pays well. 

The average base salary for a data analyst in India is around 4.96 lakhs per year that includes around 50K in bonuses and 4K on a profit-sharing basis. This figure can go up to 9.98 lakhs per year, depending on your experience, additional skills, location, and employer.

If you are just starting out as a data analyst or have less than one year of experience in the field, you can expect to earn somewhere around 3.50 lakhs per year. If you have around 1-4 years of experience, you can expect to make 4.83 lakhs per year. For analysts with 5-9 years of experience, the compensation is somewhere around 7.20 lakhs per year. Experienced candidates with 10-19 years of experience are paid around 12.75 lakhs per year.

So how much impact does your experience really have on your salary? If you are an experienced data analyst, you will earn a salary that is around 157% higher than inexperienced candidates. Mid-level experience holders can also earn 45% more than others with lesser experience.

Entry level Early-career Mid-career Experienced
3.50 lakhs per year 4.83 lakhs per year 7.20 lakhs per year 12.75 lakhs per year

Any additional skills or those that you are not taught during your certification can contribute to a higher salary. If you are skilled in data analysis, you can earn something around 4.32 lakhs per year. If you can work with SQL, you can get a salary of around 4.92 lakhs per year.

Source

Proficiency in statistical analysis is also an added bonus. You can earn around 4.80 lakhs per year with this skill. With knowledge of Microsoft Excel, your salary will be around 3.89 lakhs per year. The most popular skill out of all these is data analysis, followed by Microsoft Excel and SQL. Statistical analysis is the least popular. However, all these skills pay you less than the market rate.

In summary, there are several factors impacting the salary package when opting for data science as a career. Listed below are some of the important contributing factors:

  1. Work experience: Your years of work experience in the industry can play a significant role in determining the salary you command in a data science career. The higher the number of years you have worked in the industry, the higher your prospect of negotiating a higher pay package. 
  2. Role/ Job title: You can choose to select one of many careers in the field of data science as discussed in the preceding section. The job title or role will factor in to determine your salary package as some roles can be higher paying than others. 
  3. Employer: Who you work for can significantly impact your salary. Working with big and/or reputable employers in the field will result in earning competitive salaries. 
  4. Location: The place of employment determines the cost of living and demand for data science specialists in the area. This can directly affect your remuneration package. 
  5. Skills: Your skillsets and level of expertise in them can significantly affect your pay package. Upskilling and learning skills that are valued and in demand in the field can help you grow in your career and negotiate a higher salary. 

Conclusion

Data is the currency of our age. This makes data science careers one of the fastest growing and most popular career prospects. Data Science is amongst the number one jobs in the U.S. As per the labor statistics report of the U.S, demand for skilled data scientists will rise at the rate of 27.9 percent by the year 2026. If you have analytical skills and are passionate about computers, then an advanced degree in data science is a perfect goal for your carrier. You can join any of upGrad’s Premium Data Science Courses to accelerate the chances of getting an excellent job as a Data Scientist. 

If you are curious to learn about data science, check out IIIT-B & upGrad’s Executive PG Programme in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.

All the best for your career!

Frequently Asked Questions (FAQs)

1. What are some steps to follow for becoming a data scientist?

Data Scientist is a highly in-demand job role in the market because of the increased use of data in every sector. With the increased demand, there are plenty of students considering building their careers in the field of data science.
Here is a step-by-step process to make things easier for you:
1. Take online courses and get good at machine learning, math, and statistics
2. Learn to code different languages like Python and R
3. Achieve a bachelor's degree in data science or other related fields
4. Understand database handling for effectively retrieving information from it
5. Explore the concepts of big data and its approaches
6. Take part in competitions and network with data scientists to know more about the field
7. Take up an internship for getting industrial exposure and experience in the field
By following these steps, you will be able to become a successful data scientist and also develop a bright future for yourself. Run after acquiring the skills before you start running after a job in the field of data science.

2. Which is the best language for data science?

There are two types of programming languages being used by the programmers – low-level and high-level. Beginners in the field make use of low-level languages like machine language and assembly language. A majority of data scientists use high-level programming languages for better efficiency. Some of the widely used programming languages for data science are:
1. Python
2. JavaScript
3. Scala
4. R
5. SQL
6. Julia
Programmers use any particular programming language based on their requirements as well as their level of understanding.

3. Do data scientists utilize the C++ programming language?

Programmers are seen talking about the merits and demerits of C and C++ programming languages in concern with data science. Where Python and R are considered to be the most popular languages for data science, there are certain data science professionals seeing C and C++ as efficient and effective choices for data science.
By using the traditional C and C++ languages, developers have found them to be really useful for data science development due to their numerous opportunities. Several developers have found C++ to be the best programming language that they prefer using for data science.

Did you find this article helpful?

Rohit Sharma

Rohit Sharma is the Program Director for the UpGrad-IIIT Bangalore, PG Diploma Data Analytics Program.

See More

Get Free Consultation

+91
Phone number

By clicking "Submit" you Agree toupGrad's Terms & Conditions



SUGGESTED BLOGS

Announcing PG Diploma in Data Analytics with IIIT Bangalore

5.64K+

Announcing PG Diploma in Data Analytics with IIIT Bangalore

Data is in abundance and for corporations, big or small, investment in data analytics is no more a discretionary spend, but a mandatory investment for competitive advantage. In fact, by 2019, 90% of large organizations will have a Chief Data Officer. Indian data analytics industry alone is expected to grow to $2.3 billion by 2017-18. UpGrad’s survey also shows that leaders across industries are looking at data as a key growth driver in the future and believe that the data analytics wave is here to stay. Learn Data Science Courses online at upGrad This growth wave has created a critical supply-demand imbalance of professionals with the adequate know-how of making data-driven decisions. The scarcity exists across Data Engineers, Data Analysts and becomes more acute when it comes to Data Scientists. As a result of this imbalance, India will face an acute shortage of at least 2 lac data skilled professionals over the next couple of years. upGrad’s Exclusive Data Science Webinar for you – Transformation & Opportunities in Analytics & Insights document.createElement('video'); https://cdn.upgrad.com/blog/jai-kapoor.mp4 In pursuit of bridging this gap, UpGrad has partnered with IIIT Bangalore, to deliver a first-of-its-kind online PG Diploma program in Data Analytics, which over the years will train 10,000 professionals. Offering a perfect mix of academic rigor and industry relevance, the program is meant for all those working professionals who wish to accelerate their career in data analytics. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? Top Data Science Skills to Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Programs Inferential Statistics Programs 2 Hypothesis Testing Programs Logistic Regression Programs 3 Linear Regression Programs Linear Algebra for Analysis Programs The Advanced Certificate Programme in Data Science at UpGrad will include modules in Statistics, Data Visualization & Business Intelligence, Predictive Modeling, Machine Learning, and Big Data. Additionally, the program will feature a 3-month project where students will work on real industry problems in a domain of their choice. The first batch of the program is scheduled to start on May 2016.   Explore our Popular Data Science Certifications Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Certifications Our learners also read: Learn Python Online Course Free
Read More

by Rohit Sharma

08 Feb'16
How Organisations can Benefit from Bridging the Data Scientist Gap

5.09K+

How Organisations can Benefit from Bridging the Data Scientist Gap

Note: The article was originally written for LinkedIn Pulse by Sameer Dhanrajani, Business Leader at Cognizant Technology Solutions. Data Scientist is one of the fastest-growing and highest paid jobs in technology industry. Dr. Tara Sinclair, Indeed.com’s chief economist, said the number of job postings for “data scientist” grew 57% year-over-year in Q1:2015. Yet, in spite of the incredibly high demand, it’s not entirely clear what education someone needs to land one of these coveted roles. Do you get a degree in data science? Attend a bootcamp? Take a few Udemy courses and jump in? Learn data science to gain edge over your competitors It depends on what practice you end up it. Data Sciences has become a widely implemented phenomenon and multiple companies are grappling to build a decent DS practice in-house. Usually online courses, MOOCs and free courseware usually provides the necessary direction for starters to get a clear understanding, quickly for execution. But Data Science practice, which involves advanced analytics implementation, with a more deep-level exploratory approach to implementing Data Analytics, Machine Learning, NLP, Artificial Intelligence, Deep Learning, Prescriptive Analytics areas would require a more establishment-centric, dedicated and extensive curriculum approach. A data scientist differs from a business analyst ;data scientist requires dwelling deep into data and gathering insights, intelligence and recommendations that could very well provide the necessary impetus and direction that a company would have to take, on a foundational level. And the best place to train such deep-seeded skill would be a university-led degree course on Data Sciences. It’s a well-known fact that there is a huge gap between the demand and supply of data scientist talent across the world. Though it has taken some time, but educationalists all across have recognized this fact and have created unique blends of analytics courses. Every month, we hear a new course starting at a globally recognized university. Data growth is headed in one direction, so it’s clear that the skills gap is a long-term problem. But many businesses just can’t wait the three to five years it might take today’s undergrads to become business-savvy professionals. Hence this aptly briefs an alarming need of analytics education and why universities around the world are scrambling to get started on the route towards being analytics education leaders. Obviously, the first mover advantage would define the best courses in years to come i.e. institutes that take up the data science journey sooner would have a much mature footing in next few years and they would find it easier to attract and place students. Strategic Benefits to implementing Data Science Degrees Data science involves multiple disciplines The reason why data scientists are so highly sought after, is because the job is really a mashup of different skill sets and competencies rarely found together. Data scientists have tended to come from two different disciplines, computer science and statistics, but the best data science involves both disciplines. One of the dangers is statisticians not picking up on some of the new ideas that are coming out of machine learning, or computer scientists just not knowing enough classical statistics to know the pitfalls. Even though not everything can be taught in a Degree course, universities should clearly understand the fact that training a data science graduate would involve including multiple, heterogeneous skills as curriculum and not one consistent courseware. They might involve computer science, mathematics, statistics, business understanding, insight interpretation, even soft skills on data story telling articulation. Beware of programs that are only repackaging material from other courses Because data science involves a mixture of skills — skills that many universities already teach individually — there’s a tendency toward just repackaging existing courses into a coveted “data science” degree. There are mixed feelings about such university programs. It seems to me that they’re more designed to capitalize on the fact that the demand is out there than they are in producing good data scientists. Often, they’re doing it by creating programs that emulate what they think people need to learn. And if you think about the early people who were doing this, they had a weird combination of math and programming and business problems. They all came from different areas. They grew themselves. The universities didn’t grow them. Much of a program’s value comes from who is creating and choosing its courses. There have been some decent course guides in the past from some universities, it’s all about who designs the program and whether they put deep and dense content and coverage into it, or whether they just think of data science as exactly the same as the old sort of data mining. The Theories on Theory A recurring theme throughout my conversations was the role of theory and its extension to practical approaches, case studies and live projects. A good recommendation to aspiring data scientists would be to find a university that offers a bachelor’s degree in data science. Learn it at the bachelor’s level and avoid getting mired in only deep theory at the PostGrad level. You’d think the master’s degree dealing with mostly theory would be better, but I don’t think so. By the time you get to the MS you’re working with the professors and they want to teach you a lot of theory. You’re going to learn things from a very academic point of view, which will help you, but only if you want to publish theoretical papers. Hence, universities, especially those framing a PostGrad degree in Data Science should make sure not to fall into orchestrating a curriculum with a long drawn theory-centric approach. Also, like many of the MOOCs out there, a minimum of a capstone project would be a must to give the students a more pragmatic view of data and working on it. It’s important to learn theory of course. I know too many ‘data scientists’ even at places like Google who wouldn’t be able to tell you what Bayes’ Theorem or conditional independence is, and I think data science unfortunately suffers from a lack of rigor at many companies. But the target implementation of the students, which would mostly be in corporate houses, dealing with real consumer or organizational data, should be finessed using either simulated practical approach or with collaboration with Data Science companies to give an opportunity to students to deal with real life projects dealing with data analysis and drawing out actual business insights. Our learners also read: Free Python Course with Certification upGrad’s Exclusive Data Science Webinar for you – ODE Thought Leadership Presentation document.createElement('video'); https://cdn.upgrad.com/blog/ppt-by-ode-infinity.mp4 Explore our Popular Data Science Online Certifications Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Online Certifications Don’t Forget About the Soft Skills In an article titled The Hard and Soft Skills of a Data Scientist, Todd Nevins provides a list of soft skills becoming more common in data scientist job requirements, including: Manage teams and projects across multiple departments on and offshore. Consult with clients and assist in business development. Take abstract business issues and derive an analytical solution. Top Data Science Skills You Should Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Online Certification Inferential Statistics Online Certification 2 Hypothesis Testing Online Certification Logistic Regression Online Certification 3 Linear Regression Certification Linear Algebra for Analysis Online Certification The article also emphasizes the importance of these skills, and criticizes university programs for often leaving these skills out altogether: “There’s no real training about how to talk to clients, how to organize teams, or how to lead an analytics group.” Data science is still a rapidly evolving field and until the norms are more established, it’s unlikely every data scientist will be following the same path. A degree in data science will definitely act as the clay to make your career. But the part that really separates people who are successful from that are not is just a core curiosity and desire to answer questions that people have — to solve problems. Don’t do it because you think you can make a lot of money, chances are by the time you’re trained, you either don’t know the right stuff or there’s a hundred other people competing for the same position, so the only thing that’s going to stand out is whether you really like what you’re doing. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences?
Read More

by Ashish Korukonda

03 May'16
Computer Center turns Data Center; Computer Science turns Data Science

5.13K+

Computer Center turns Data Center; Computer Science turns Data Science

(This article, written by Prof. S. Sadagopan, was originally published in Analytics India Magazine) There is an old “theory” that talks of “power shift” from “carrier” to “content” and to “control” as industry matures. Here are some examples In the early days of Railways, “action” was in “building railroads”; the “tycoons” who made billions were those “railroad builders”. Once enough railroads were built, there was more action in building “engines and coaches” – General Electric and Bombardier emerged; “power” shifted from “carrier” to “content”; still later, action shifted to “passenger trains” and “freight trains” – AmTrak and Delhi Metro, for example, that used the rail infrastructure and available engines and coaches / wagons to offer a viable passenger / goods transportation service; power shifted from “content” to “control”. The story is no different in the case of automobiles; “carrier” road-building industry had the limelight for some years, then the car and truck manufacturers – “content” – GM, Daimler Chrysler, Tata, Ashok Leyland and Maruti emerged – and finally, the “control”, transport operators – KSRTC in Bangalore in the Bus segment to Uber and Ola in the Car segment. In fact, even in the airline industry, airports become the “carrier”, airplanes are the “content” and airlines represent the “control” Learn data science courses from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career. It is a continuum; all three continue to be active – carrier, content and control – it is just the emphasis in terms of market and brand value of leading companies in that segment, profitability, employment generation and societal importance that shifts. We are witnessing a similar “power shift” in the computer industry. For nearly six decades the “action” has been on the “carrier”, namely, computers; processors, once proprietary from the likes of IBM and Control Data, then to microprocessors, then to full blown systems built around such processors – mainframes, mini computers, micro computers, personal computers and in recent times smartphones and Tablet computers. Intel and AMD in processors and IBM, DEC, HP and Sun dominated the scene in these decades. A quiet shift happened with the arrival of “independent” software companies – Microsoft and Adobe, for example and software services companies like TCS and Infosys. Along with such software products and software services companies came the Internet / e-Commerce companies – Yahoo, Google, Amazon and Flipkart; shifting the power from “carrier” to “content”. Explore our Popular Data Science Courses Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Courses This shift was once again captured by the use of “data center” starting with the arrival of Internet companies and the dot-com bubble in late nineties. In recent times, the term “cloud data center” is gaining currency after the arrival of “cloud computing”. Though interest in computers started in early fifties, Computer Science took shape only in seventies; IITs in India created the first undergraduate program in Computer Science and a formal academic entity in seventies. In the next four decades Computer Science has become a dominant academic discipline attracting the best of the talent, more so in countries like India. With its success in software services (with $ 160 Billion annual revenue, about 5 million direct jobs created in the past 20 years and nearly 7% of India’s GDP), Computer Science has become an aspiration for hundreds of millions of Indians. With the shift in “power” from “computers” to “data” – “carrier” to “content” – it is but natural, that emphasis shifts from “computer science” to “data science” – a term that is in wide circulation only in the past couple of years, more in corporate circles than in academic institutions. In many places including IIIT Bangalore, the erstwhile Database and Information Systems groups are getting re-christened as “Data Science” groups; of course, for many acdemics, “Data Science” is just a buzzword, that will go “out of fashion” soon. Only time will tell! As far as we are concerned, the arrival of data science represents the natural progression of “analytics”, that will use the “data” to create value, the same way Metro is creating value out of railroad and train coaches or Uber is creating value out of investments in road and cars or Singapore Airlines creating value out of airport infrastructure and Boeing / Airbus planes. More important, the shift from “carrier” to “content” to “control” also presents economic opportunities that are much larger in size. We do expect the same from Analytics as the emphasis shifts from Computer Science to Data Science to Analytics. Computers originally created to “compute” mathematical tables could be applied to a wide range of problems across every industry – mining and machinery, transportation, hospitality, manufacturing, retail, banking & financial services, education, healthcare and Government; in the same vein, Analytics that is currently used to summarize, visualize and predict would be used in many ways that we cannot even dream of today, the same way the designers of computer systems in 60’s and 70’s could not have predicted the varied applications of computers in the subsequent decades. We are indeed in exciting times and you the budding Analytics professional could not have been more lucky. Announcing PG Diploma in Data Analytics with IIT Bangalore – To Know more about the Program Visit – PG Diploma in Data Analytics. Top Data Science Skills to Learn to upskill SL. No Top Data Science Skills to Learn 1 Data Analysis Online Courses Inferential Statistics Online Courses 2 Hypothesis Testing Online Courses Logistic Regression Online Courses 3 Linear Regression Courses Linear Algebra for Analysis Online Courses upGrad’s Exclusive Data Science Webinar for you – ODE Thought Leadership Presentation document.createElement('video'); https://cdn.upgrad.com/blog/ppt-by-ode-infinity.mp4 Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? Our learners also read: Free Online Python Course for Beginners About Prof. S. Sadagopan Professor Sadagopan, currently the Director (President) of IIIT-Bangalore (a PhD granting University), has over 25 years of experience in Operations Research, Decision Theory, Multi-criteria optimization, Simulation, Enterprise computing etc. His research work has appeared in several international journals including IEEE Transactions, European J of Operational Research, J of Optimization Theory & Applications, Naval Research Logistics, Simulation and Decision Support Systems. He is a referee for several journals and serves on the editorial boards of many journals.
Read More

by Prof. S. Sadagopan

11 May'16
Enlarge the analytics & data science talent pool

5.19K+

Enlarge the analytics & data science talent pool

Note: The articlewas originally written by Sameer Dhanrajani, Business Leader at Cognizant Technology Solutions. A Better Talent acquisition Framework Although many articles have been written lamenting the current talent shortage in analytics and data science, I still find that the majority of companies could improve their success by simply revamping their current talent acquisition processes. Learn data science courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career. We’re all well aware that strong quantitative professionals are few and far between, so it’s in a company’s best interest to be doing everything in their power to land qualified candidates as soon as they find them. It’s a candidate’s market, with strong candidates going on and off the market lightning fast, yet many organizational processes are still slow and outdated. These sluggish procedures are not equipped to handle many candidates who are fielding multiple offers from other companies who are just as hungry (if not more so) for quantitative talent. Here are the key areas I would change to make hiring processes more competitive: Fix your salary bands – It (almost) goes without saying that if your salary offerings are outdated or aren’t competitive to the field, it will be difficult for you to get the attention of qualified candidates; stay topical with relevant compensation grids. Consider one-time bonuses – Want to make your offer compelling but can’t change the salary? Sign-on bonuses and relocation packages are also frequently used, especially near the end of the year, when a candidate is potentially walking away from an earned bonus; a sign-on bonus can help seal the deal. Be open to other forms of compensation – There are plenty of non-monetary ways to entice Quants to your company, like having the latest tools, solving challenging problems, organization-wide buy-in for analytics and more. Other things to consider could be flexible work arrangements, remote options or other unique perks. Pick up the pace – Talented analytics professionals are rare, and the chances that qualified candidates will be interviewing with multiple companies are very high. Don’t hesitate to make an offer if you find what you’re looking for at a swift pace – your competitors won’t. Court the candidate – Just as you want a candidate who stands out from the pack, a candidate wants a company that makes an effort to stand apart also. I read somewhere, a client from Chicago sent an interviewing candidate and his family pizzas from a particularly tasty restaurant in the city. I can’t say for sure that the pizza was what persuaded him to take the company’s offer, but a little old-fashioned wooing never hurts. Button up the process – Just as it helps to have an expedited process, it also works to your benefit is the process is as smooth and trouble-free as you can make it. This means hassle-free travel arrangements, on-time interviews, and quick feedback. Network – make sure that you know the best of the talent available in the market at all levels and keep in touch with them thru porfessional social sites on subtle basis as this will come handy in picking the right candidate on selective basis Redesigned Interview Process In the old days one would screen resumes and then schedule lots of 1:1’s. Typically people would ask questions aimed at assessing a candidate’s proficiency with stats, technicality, and ability to solve problems. But there were three problems with this – the interviews weren’t coordinated well enough to get a holistic view of the candidate, we were never really sure if their answers would translate to effective performance on the job, and from the perspective of the candidate it was a pretty lengthy interrogation. So, a new interview process need to be designed that is much more effective and transparent – we want to give the candidate a sense for what a day in the life of a member on the team is like, and get a read on what it would be like to work with a company. In total it takes about two days to make a decision, and there be no false positives (possibly some false negatives though), and the feedback from both the candidates and the team members has been positive. There are four steps to the process: Resume/phone screens – look for people who have experience using data to drive decisions, and some knowledge of what your company is all about. On both counts you’ll get a much deeper read later in the process; you just want to make sure that moving forward is a good use of either of both of your time. Basic data challenge – The goal here is to validate the candidate’s ability to work with data, as described in their resume. So send a few data sets to them and ask a basic question; the exercise should be easy for anyone who has experience. In-house data challenge – This is should be the meat of the interview process. Try to be as transparent about it as possible – they’ll get to see what it’s like working with you and vice versa. So have the candidate sit with the team, give them access to your data, and a broad question. They then have the day to attack the problem however they’re inclined, with the support of the people around them. Do encourage questions, have lunch with them to ease the tension, and check-in periodically to make sure they aren’t stuck on something trivial. At the end of the day, we gather a small team together and have them present their methodology and findings to you. Here, look for things like an eye for detail (did they investigate the data they’re relying upon for analysis), rigor (did they build a model and if so, are the results sound), action-oriented (what would we do with what you found), and communication skills. Read between the resume lines Intellectual curiosity is what you should discover from the project plans. It’s what gives the candidate the ability to find loopholes or outliers in data that helps crack the code to find the answers to issues like how a fraudster taps into your system or what consumer shopping behaviors should be considered when creating a new product marketing strategy. Data scientists find the opportunities that you didn’t even know were in the realm of existence for your company. They also find the needle in the haystack that is causing a kink in your business – but on an entirely monumental scale. In many instances, these are very complex algorithms and very technical findings. However, a data scientist is only as good as the person he must relay his findings to. Others within the business need to be able to understand this information and apply these insights appropriately. Explore our Popular Data Science Courses Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Courses Good data scientists can make analogies and metaphors to explain the data but not every concept can be boiled down in layman’s terms. A space rocket is not an automobile and, in the brave new world, everyone must make this paradigm shift. Top Data Science Skills You Should Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Online Certification Inferential Statistics Online Certification 2 Hypothesis Testing Online Certification Logistic Regression Online Certification 3 Linear Regression Certification Linear Algebra for Analysis Online Certification upGrad’s Exclusive Data Science Webinar for you – Watch our Webinar on The Future of Consumer Data in an Open Data Economy document.createElement('video'); https://cdn.upgrad.com/blog/sashi-edupuganti.mp4 Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? Our learners also read: Free Python Course with Certification And lastly, the data scientist you’re looking for needs to have strong business acumen. Do they know your business? Do they know what problems you’re trying to solve? And do they find opportunities that you never would have guessed or spotted?
Read More

by upGrad

14 May'16
UpGrad partners with Analytics Vidhya

5.69K+

UpGrad partners with Analytics Vidhya

We are happy to announce our partnership with Analytics Vidhya, a pioneer in the Data Science community. Analytics Vidhya is well known for its impressive knowledge base, be it the hackathons they organize or tools and frameworks that they help demystify. In their own words, “Analytics Vidhya is a passionate community for Analytics/Data Science professionals, and aims at bringing together influencers and learners to augment knowledge”. Explore our Popular Data Science Degrees Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Degrees We are joining hands to provide candidates of our PG Diploma in Data Analytics, an added exposure to UpGrad Industry Projects. While the program already covers multiple case studies and projects in the core curriculum, these projects with Analytics Vidhya will be optional for students to help them further hone their skills on data-driven problem-solving techniques. To further facilitate the learning, Analytics Vidhya will also be providing mentoring sessions to help our students with the approach to these projects. Our learners also read: Free Online Python Course for Beginners Top Essential Data Science Skills to Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Certifications Inferential Statistics Certifications 2 Hypothesis Testing Certifications Logistic Regression Certifications 3 Linear Regression Certifications Linear Algebra for Analysis Certifications This collaboration brings great value to the program by allowing our students to add another dimension to their resume which goes beyond the capstone projects and case studies that are already a part of the program. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? Through this, we hope our students would be equipped to showcase their ability to dissect any problem statement and interpret what the model results mean for business decision making. This also helps us to differentiate UpGrad-IIITB students in the eyes of the recruiters. upGrad’s Exclusive Data Science Webinar for you – Transformation & Opportunities in Analytics & Insights document.createElement('video'); https://cdn.upgrad.com/blog/jai-kapoor.mp4 Check out our data science training to upskill yourself
Read More

by Omkar Pradhan

09 Oct'16
Data Analytics Student Speak: Story of Thulasiram

5.69K+

Data Analytics Student Speak: Story of Thulasiram

When Thulasiram enrolled in the UpGrad Data Analytics program, in its first cohort, he was not very different for us, from the rest of our students in this. While we still do not and should not treat learners differently, being in the business of education – we definitely see this particular student in a different light. His sheer resilience and passion for learning shaped his success story at UpGrad. Humble beginnings Born in the small town of Chittoor, Andhra Pradesh, Thulasiram does not remember much of his childhood given that he enlisted in the Navy at a very young age of about 15 years. Right out of 10th standard, he trained for four years, acquiring a diploma in mechanical engineering. Thulasiram came from humble means. His father was the manager of a small general store and his mother a housewife. It’s difficult to dream big when leading a sheltered life with not many avenues for exposure to unconventional and exciting opportunities. But you can’t take learning out of the learner. “One thing I remember about school is our Math teacher,” reminisces Thulasiram, “He used to give us lot of puzzles to solve. I still remember one puzzle. If you take a chessboard and assume that all pawns are queens; you have to arrange them in such a way that none of the eight pawns should die. Every queen, should not affect another queen. It was a challenging task, but ultimately we did it, we solved it.” Navy & MBA At 35 years of age, Thulasiram has been in the navy for 19 years. Presently, he is an instructor at the Naval Institute of Aeronautical Technology. “I am from the navy and a lot of people don’t know that there is an aviation wing too. So, it’s like a dream; when you are a small child, you never dream of touching an aircraft, let alone maintaining it. I am very proud of doing this,” says Thulasiram on taking the initiative to upskill himself and becoming a naval-aeronautics instructor. When the system doesn’t push you, you have to take the initiative yourself. Thulasiram imbibed this attitude. He went on to enroll in an MBA program and believes that the program drastically helped improve his communication skills and plan his work better. How Can You Transition to Data Analytics? Data Analytics Like most of us, Thulasiram began hearing about the hugely popular and rapidly growing domain of data analytics all around him. Already equipped with the DNA of an avid learner and keen to pick up yet another skill, Thulasiram began researching the subject. He soon realised that this was going to be a task more rigorous and challenging than any he had faced so far. It seemed you had to be a computer God, equipped with analytical, mathematical, statistical and programming skills as prerequisites – a list that could deter even the most motivated individuals. This is where Thulsiram’s determination set him apart from most others. Despite his friends, colleagues and others that he ran the idea by, expressing apprehension and deterring him from undertaking such a program purely with his interests in mind – time was taken, difficulty level, etc. – Thulasiram, true to the spirit, decided to pursue it anyway. Referring to the crucial moment when he made the decision, he says, If it is easy, everybody will do it. So, there is no fun in doing something which everybody can do. I thought, let’s go for it. Let me push myself — challenge myself. Maybe, it will be a good challenge. Let’s go ahead and see whether I will be able to do it or not. UpGrad Having made up his mind, Thulasiram got straight down to work. After some online research, he decided that UpGrad’s Data Analytics program, offered in collaboration with IIIT-Bangalore that awarded a PG Diploma on successful completion, was the way to go. The experience, he says, has been nothing short of phenomenal. It is thrilling to pick up complex concepts like machine learning, programming, or statistics within a matter of three to four months – a feat he deems nearly impossible had the source or provider been one other than UpGrad. Our learners also read: Top Python Free Courses Favorite Elements Ask him what are the top two attractions for him in this program and, surprising us, he says deadlines! Deadlines and assignments. He feels that deadlines add the right amount of pressure he needs to push himself forward and manage time well. As far as assignments are concerned, Thulasiram’s views resonate with our own – that real-life case studies and application-based learning goes a long way. Working on such cases and seeing results is far superior to only theoretical learning. He adds, “flexibility is required because mostly only working professionals will be opting for this course. You can’t say that today you are free, because tomorrow some project may be landing in your hands. So, if there is no flexibility, it will be very difficult. With flexibility, we can plan things and maybe accordingly adjust work and family and studies,” giving the UpGrad mode of learning, yet another thumbs-up. Amongst many other great things he had to say, Thulasiram was surprised at the number of live sessions conducted with industry professionals/mentors every week. Along with the rest of his class, he particularly liked the one conducted by Mr. Anand from Gramener. Top Data Science Skills to Learn to upskill SL. No Top Data Science Skills to Learn 1 Data Analysis Online Courses Inferential Statistics Online Courses 2 Hypothesis Testing Online Courses Logistic Regression Online Courses 3 Linear Regression Courses Linear Algebra for Analysis Online Courses What Kind of Salaries do Data Scientists and Analysts Demand? Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? upGrad’s Exclusive Data Science Webinar for you – ODE Thought Leadership Presentation document.createElement('video'); https://cdn.upgrad.com/blog/ppt-by-ode-infinity.mp4 Explore our Popular Data Science Courses Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Courses “Have learned most here, only want to learn..” Interested only in learning, Thulasiram made this observation about the program – compared to his MBA or any other stage of life. He signs off calling it a game-changer and giving a strong recommendation to UpGrad’s Data Analytics program. We are truly grateful to Thulasiram and our entire student community who give us the zeal to move forward every day, with testimonials like these, and make the learning experience more authentic, engaging, and truly rewarding for each one of them. If you are curious to learn about data analytics, data science, check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Read More

by Apoorva Shankar

07 Dec'16
Decoding Easy vs. Not-So-Easy Data Analytics

5.12K+

Decoding Easy vs. Not-So-Easy Data Analytics

Authored by Professor S. Sadagopan, Director – IIIT Bangalore. Prof. Sadagopan is one of the most experienced academicians on the expert panel of UpGrad & IIIT-B PG Diploma Program in Data Analytics. As a budding analytics professional confounded by jargon, hype and overwhelming marketing messages that talk of millions of upcoming jobs that are paid in millions of Rupees, you ought to get clarity about the “real” value of a data analytics education. Here are some tidbits – that should hopefully help in reducing your confusion. Some smart people can use “analytical thinking” to come up with “amazing numbers”; they are very useful but being “intuitive”, they cannot be “taught.” For example: Easy Analytics Pre-configuring ATMs with Data Insights  “We have the fastest ATM on this planet” Claimed a respected Bank. Did they get a new ATM made especially for them? No way. Some smart employee with an analytical mindset found that 90% of the time that users go to an ATM to withdraw cash, they use a fixed amount, say Rs 5,000. So, the Bank re-configured the standard screen options – Balance Inquiry, Withdrawal, Print Statement etc. – to include another option. Withdraw XYZ amount, based on individual customer’s past actions. This ended up saving one step of ATM operation. Instead of selecting the withdrawal option and then entering the amount to be withdrawn, you could now save some time – making the process more convenient and intuitive. A smart move indeed, however, this is something known as “Easy Analytics” that others can also copy. In fact, others DID copy, within three months! A Start-Up’s Guide to Data Analytics Hidden Data in the Weather In the sample data-sets that used to accompany a spreadsheet product in the 90’s, there used to be data on the area and population of every State in the United States. There was also an exercise to teach the formula part of the spreadsheet to compute the population density (population per sq. km). New Jersey, with a population of 467 per sq. km, is the State with the highest density. While teaching a class of MBA students in New Jersey, I met an Indian student who figured out that in terms of population density, New Jersey is more crowded than India with 446 people per sq. km!  An interesting observation, although comparing a State with a Country is a bit misleading. Once again, an Easy Analytics exercise leading to a “nice” observation! Some simple data analytics exercises can be routinely done, and are made relatively easier, thanks to amazing tools: B-School Buying Behavior Decoded In a B-School in India that has a store on campus, (campus is located far from the city center) some smart students put several years of sales data of their campus store. They were excited by the phenomenal computer power and near, idiot-proof analytics software. The real surprise, however, was that eight items accounted for 85% of their annual sales. More importantly, these eight items were consumed in just six days of the year! Everyone knew that a handful of items were the only fast-moving items, but they did not know the extent (85%) or the intensity (consumption in just six days) of this. It turns out that in the first 3 days of the semester the students would stock the items for the full semester! The B-School found it sensible to request a nearby store to prop up a temporary stall for just two weeks at the beginning of the semesters and close down the Campus Store. This saved useful space and costs without causing major inconvenience to the students. A good example of Easy Analytics done with the help of a powerful tool. Top 4 Data Analytics Skills You Need to Become an Expert! The “Not So Easy” Analytics needs deep analytical understanding, tools, an ‘analytical mindset’ and some hard work. Here are two examples, one taken from way back in the 70’s and the other occurring very recently: Not-So-Easy Analytics To Fly or Not to Fly, That is the Question Long ago, the American Airlines perfected planned overbooking of airline seats, thanks to SABRE Airline Reservation system that managed every airline seat. Armed with detailed past data of ‘empty seats’ and ‘no show’ in every segment of every flight for every day through the year, and modeling airline seats as perishable commodities, the American Airlines was able to improve yield, i.e., utilization of airplane capacity. They did this through planned overbooking – selling more tickets than the number of seats, based on projected cancellations. Explore our Popular Data Science Online Certifications Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Online Certifications If indeed more passengers showed up than the actual number of seats, American Airlines would request anyone volunteering to forego travel in the specific flight, with the offer to fly them by the next flight (often free) and taking care of hotel accommodation if needed. Sometimes, they would even offer cash incentives to the volunteer to opt-out. Using sophisticated Statistical and Operational Research modeling, American Airlines would ensure that the flights went full and the actual incidents of more passengers than the full capacity, was near zero. In fact, many students would look forward to such incidents so that they could get incentives, (in fact, I would have to include myself in this list) but rarely were they rewarded!) upGrad’s Exclusive Data Science Webinar for you – Transformation & Opportunities in Analytics & Insights document.createElement('video'); https://cdn.upgrad.com/blog/jai-kapoor.mp4 What American Airlines started as an experiment has become the standard industry practice over the years. Until recently, a team of well-trained (often Ph.D. degree holders) analysts armed with access to enormous computing power, was needed for such an analytics exercise to be sustained. Now, new generation software such as the R Programming language and powerful desktop computers with significant visualization/graphics power is changing the world of data analytics really fast. Anyone who is well-trained (not necessarily requiring a Ph.D. anymore) can become a first-rate analytics professional. Top Data Science Skills You Should Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Online Certification Inferential Statistics Online Certification 2 Hypothesis Testing Online Certification Logistic Regression Online Certification 3 Linear Regression Certification Linear Algebra for Analysis Online Certification Unleashing the Power of Data Analytics Our learners also read: Free Python Course with Certification Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences?   Cab Out of the Bag Uber is yet another example displaying how the power of data analytics can disrupt a well-established industry. Taxi-for-sure in Bangalore and Ola Cabs are similar to Uber. Together, these Taxi-App companies (using a Mobile App to hail a taxi, the status monitor the taxi, use and pay for the taxi) are trying to convince the world to move from car ownership to on-demand car usage. A simple but deep analytics exercise in the year 2008 gave such confidence to Uber that it began talking of reducing car sales by 25% by the year 2025! After building the Uber App for iPhone, the Uber founder enrolled few hundreds of taxi customers in San Francisco and few hundreds of taxi drivers in that area as well. All that the enrolled drivers had to do was to touch the Uber App whenever they were ready for a customer. Similarly, the enrolled taxi customers were requested to touch the Uber App whenever they were looking for a taxi. Thanks to the internet-connected phone (connectivity), Mobile App (user interface), GPS (taxi and end-user location) and GIS (location details), Uber could try connecting the taxi drivers and the taxi users. The real insight was that nearly 90% of the time, taxi drivers found a customer, less than 100 meters away! In the same way, nearly 90% of the time, taxi users were connected with their potential drivers in no time, not too far away. Unfortunately, till the Uber App came into existence, riders and taxi drivers had no way of knowing this information. More importantly, they both had no way of reaching each other! Once they had this information and access, a new way of taxi-hailing could be established. With back-end software to schedule taxis, payment gateway and a mobile payment mechanism, a far more superior taxi service could be established. Of course, near home, we had even better options like Taxi-for-sure trying to extend this experience even to auto rickshaws. The rest, as they say, is “history in the making!” Deep dive courses in data analytics will help prepare you for such high impact applications. It is not easy, but do remember former US President Kennedy’s words “we chose to go to the Moon not because it is easy, but because it is hard!” Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.  
Read More

by Prof. S. Sadagopan

14 Dec'16
Launching UpGrad’s Data Analytics Roadshow – Are You Game?

5.14K+

Launching UpGrad’s Data Analytics Roadshow – Are You Game?

We, at UpGrad, are excited to announce a brand new partnership with various thought leaders in the Data Analytics industry – IIIT Bangalore, Genpact, Analytics Vidhya and Gramener – to bring to you a one-of-a-kind Analytics Roadshow! As part of this roadshow, we will be conducting several back-to-back events that focus on different aspects of analytics, creating interaction points across India, to do our bit for a future ready and analytical, young workforce.  Also Read: Analytics Vidhya article on the UpGrad Data Analytics Roadshow Here is the line-up for the roadshow, to give you a better sense of what to expect: 9 webinars – These webinars (remote) will be conducted by industry experts and are aimed at increasing analytics awareness, providing a way for aspirants to interact with industry practitioners and getting their tough questions answered. 11 workshops – The workshops will be in-person events to take these interactions to the next level. These would be spread across 6 cities – Delhi, Bengaluru, Hyderabad, Chennai, Mumbai and Pune. So, if you are in any of these cities, we are looking forward to interact with you. Featured Data Science program for you: Master of Science in Data Science from from IIIT-B 2 Conclaves – These conclaves are larger events with a pre-defined agendas and time for networking. The first conclave is happening on the 17th of December in Bengaluru.  Explore our Popular Data Science Online Certifications Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Online Certifications Hackathon – Time to pull up your sleeves and showcase your nifty skills. We will be announcing the format of the event shortly. “We find that the IT in­dustry is ab­sorb­ing al­most half of all of the ana­lyt­ics jobs. Banking is the second largest, but trails at al­most one fourth of IT’s re­cruit­ing volume. It is in­ter­est­ing that data rich in­dus­tries like Retail, Energy and Insurance are trail­ing near the bot­tom, lower than even con­struc­tion or me­dia, who handle less data. Perhaps these are ripe for dis­rup­tion through ana­lyt­ics?” Our learners also read: Learn Python Online for Free Mr. S. Anand, CEO of Gramener, wonders aloud. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? upGrad’s Exclusive Data Science Webinar for you – Watch our Webinar on The Future of Consumer Data in an Open Data Economy document.createElement('video'); https://cdn.upgrad.com/blog/sashi-edupuganti.mp4   Top Data Science Skills You Should Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Online Certification Inferential Statistics Online Certification 2 Hypothesis Testing Online Certification Logistic Regression Online Certification 3 Linear Regression Certification Linear Algebra for Analysis Online Certification Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Read More

by Apoorva Shankar

15 Dec'16
What’s Cooking in Data Analytics? Team Data at UpGrad Speaks Up!

5.22K+

What’s Cooking in Data Analytics? Team Data at UpGrad Speaks Up!

Team Data Analytics is creating the most immersive learning experience for working professionals at UpGrad. Data Insider recently checked in to me to get my insights on the data analytics industry; including trends to watch out for and must-have skill sets for today’s developers. Here’s how it went: How competitive is the data analytics industry today? What is the demand for these types of professionals? Let’s talk some numbers, a widely-quoted McKinsey report states that the United States will face an acute shortage of around 1.5 million data professionals by 2018. In India, which is emerging as the global analytics hub, the shortage of such professionals could go up to as high as 200,000. In India alone, the number of analytics jobs saw a 120 percent rise from June 2015 to June 2016. So, we clearly have a challenge set out for us. Naturally, because of acute talent shortage, talented professionals are high in demand. Decoding Easy vs. Not-So-Easy Analytics What trends are you following in the data analytics industry today? Why are you interested in them? There are three key trends that we should watch out for: Personalization I think the usage of data to create personalized systems is a key trend being adopted extremely fast, across the board. Most of the internet services are removing the anonymity of online users and moving towards differentiated treatment. For example, words recommendations when you are typing your messages or destinations recommendations when you are using Uber. Our learners also read: Learn Python Online for Free End of Moore’s Law Another interesting trend to watch out for is how companies are getting more and more creative as we reach the end of Moore’s Law. Moore’s Law essentially states that every two years we will be able to fit double the number of transistors that could be fit on a chip, two years ago. Because of this law, we have unleashed the power of storing and processing huge amounts of data, responsible for the entire data revolution. But what will happen next? IoT Another trend to watch out for, for the sheer possibilities it brings. It’s the emergence of smart systems which is made possible by the coming together of cloud, big data, and IoT (internet of things). Explore our Popular Data Science Courses Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Courses What skill sets are critical for data engineers today? What do they need to know to stay competitive? A good data scientist sits at a rare overlap of three areas: Domain Knowledge This helps understand and appreciate the nuances of a business problem. For e.g, an e-commerce company would want to recommend complementary products to its buyers. Statistical Knowledge Statistical and mathematical knowledge help to inform data-driven decision making. For instance, one can use market basket analysis to come up with complementary products for a particular buy. Technical Knowledge This helps perform complex analysis at scale; such as creating a recommendation system that shows that a buyer might prefer to also buy a pen while buying a notebook. How Can You Transition to Data Analytics? Outside of their technical expertise, what other skills should those in data analytics and business intelligence be sure to develop? Ultimately, data scientists are problem solvers. And every problem has a specific context, content and story behind it. This is where it becomes extremely important to tie all these factors together – into a common narrative. Essentially all data professionals need to be great storytellers. In this respect, one of the key skills for analysts to sharpen would be, breaking down the complexities of analytics for others working with them. They can appreciate the actual insights derived – and work toward a common business goal. In addition, what is as crucial is getting into a habit of constantly learning. Even if it means waking up every morning and reading what’s relevant and current in your domain. Top Essential Data Science Skills to Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Certifications Inferential Statistics Certifications 2 Hypothesis Testing Certifications Logistic Regression Certifications 3 Linear Regression Certifications Linear Algebra for Analysis Certifications What should these professionals be doing to stay ahead of trends and innovations in the field? Professionals these days need to continuously upskill themselves and be willing to unlearn and relearn. The world of work and the industrial landscape of technology-heavy fields such as data analytics is changing every year. The only way to stay ahead, or even at par with these trends, is to invest in learning, taking up exciting industry-relevant projects, participating in competitions like Kaggle, etc. How important is mentorship in the data industry? Who can professionals look toward to help further their careers and their skills? Extremely important. Considering how fast this domain has emerged, academia and universities, in general, have not had the chance to keep up equally fast. Hence, the only way to stay industry-relevant with respect to this domain is to have industry-specific learning. This can only be done in two ways – through real-life case studies and mentors who are working/senior professionals and hail from the data analytics industry. In fact, at UpGrad, there is a lot of stress on industry mentorship for aspiring data specialists. This is in addition to a whole host of case studies and industry-relevant projects. Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences?   Where are the best places for data professionals to find mentors? upGrad’s Exclusive Data Science Webinar for you – Transformation & Opportunities in Analytics & Insights document.createElement('video'); https://cdn.upgrad.com/blog/jai-kapoor.mp4 While it’s important for budding or aspiring data professionals to tap into their networks to find the right mentors, it is admittedly tough to do so. There are two main reasons that can be blamed for this. First, due to the nascent stage, the industry is at, it is extremely difficult to find someone with the requisite skill sets to be a mentor. Even if you find someone with considerable experience in the field, not everybody has the time and inclination to be an effective mentor. Hence most people don’t know where to go to be mentored. That’s where platforms like UpGrad come in, which provide you with a rich, industry-relevant learning experience. Nowhere else are you likely to chance upon such a wide range of industry tie-ups or associations for mentorship from very senior and reputed professionals. How Can You Transition to Data Analytics? What resources should those in the data analytics industry be using to ensure they’re educated and up-to-date on developments, trends, and skills? There are many. For starters, here are some good and pretty interesting blogs and resources that would serve aspiring/current data analysts well to keep up with Podcasts like Data Skeptic, Freakonomics, Talking Machines, and much more.   This interview was originally published on Data Insider.  
Read More

by Rohit Sharma

23 Dec'16