Blog_Banner_Asset
    Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconUltimate Guide to Object Detection Using Deep Learning [2024]

Ultimate Guide to Object Detection Using Deep Learning [2024]

Last updated:
20th Oct, 2022
Views
Read Time
14 Mins
share image icon
In this article
Chevron in toc
View All
Ultimate Guide to Object Detection Using Deep Learning [2024]

Introduction

Object detection, in simple terms, is a method that is used to recognize and detect different objects present in an image or video and label them to classify these objects. Object detection typically uses different algorithms to perform this recognition and localization of objects, and these algorithms utilize deep learning to generate meaningful results.

Deep learning object detection is a fast and effective way to predict an object’s location in an image, which can be helpful in many situations. RCNN or Region-based Convolutional Neural Networks, is one of the pioneering approaches that is utilised in object detection using deep learning

Best Machine Learning and AI Courses Online

Read: Check out our free NLP course 

Ads of upGrad blog

Object Detection

Object detection technique helps in the recognition, detection, and localization of multiple visual instances of objects in an image or a video. It provides a much better understanding of the object as a whole, rather than just basic object classification. This method can be used to count the number of instances of unique objects and mark their precise locations, along with labeling. With time, the performance of this process has also improved significantly, helping us with real-time use cases. All in all, it answers the question: “What object is where and how much of it is there?”.

Source

What is an Object?

An object is an element that can be represented visually. The physical characteristics of an object do not have a wide range of variability. An object must be semi-rigid to be detected and differentiated.

In-demand Machine Learning Skills

History of Object Detection

In the last 20 years, the progress of object detection has generally gone through two significant development periods, starting from the early 2000s:

1. Traditional object detection- the early 2000s to 2014.

2. Deep learning-based detection- after 2014.

The technical evolution of object detection started in the early 2000s and the detectors at that time. They followed the low-level and mid-level vision and followed the method of ‘recognition-by-components’. This method enabled object detection as a measurement of similarity between the object components, shapes, and contours, and the features that were taken into consideration were distance transforms, shape contexts, and edgeless, etc. Things did not go well and then machine detection methods started to come into the picture to solve this problem.

Multi-scale detection of objects was to be done by taking those objects into consideration that had “different sizes” and “different aspect ratios”. This was one of the main technical challenges in object detection in the early phases. But, after 2014, with the increase in technical advancements, the problem was solved. This brought us to the second phase of object detection, where the tasks were accomplished using deep learning

Source

Concept

The main concept behind this process is that every object will have its features. These features can help us to segregate objects from the other ones. Object detection methodology uses these features to classify the objects. The same concept is used for things like face detection, fingerprint detection, etc.

Let us take an example, if we have two cars on the road, using the object detection algorithm, we can classify and label them. 

Source

Definition

Object detection is a process of finding all the possible instances of real-world objects, such as human faces, flowers, cars, etc. in images or videos, in real-time with utmost accuracy. The object detection technique uses derived features and learning algorithms to recognize all the occurrences of an object category. The real-world applications of object detection are image retrieval, security and surveillance, advanced driver assistance systems, also known as ADAS, and many others. 

Read: Top 10 Deep Learning techniques

General description of Object Detection

We humans can detect various objects present in front of us and we also can identify all of them with accuracy. It is very easy for us to count and identify multiple objects without any effort. Recent developments in technologies have resulted in the availability of large amounts of data to train efficient algorithms, to make computers do the same task of classification and detection.

There are so many terms related to object recognition like computer vision, object localization, object classification, etc. and it might overwhelm you as a beginner, so let us know all these terms and their definitions step by step:

  • Computer Vision: It is a field of artificial intelligence that enables us to train the computers to understand and interpret the visuals of images and videos using algorithms and models.
  • Image Classification: It involves the detection and labeling of images using artificial intelligence. These images are classified using the features given by the users.
  • Object Localization: It involves the detection of different objects in a given visual and draws a boundary around them, mostly a box, to classify them.
  • Object Detection: It involves both of these processes and classifies the objects, then draws boundaries for each object and labels them according to their features.

All of these features constitute the object recognition process. 

How does Object Detection work?

Now that we have gone through object detection and gained knowledge on what it is, now it’s the time to know how it works, and what makes it work. We can have a variety of approaches, but there are two main approaches- a machine learning approach and a deep learning approach. Both of these approaches are capable of learning and identifying the objects, but the execution is very different. 

Also Read: TensorFlow Object detection Tutorial

Methods for Object Detection

Object detection can be done by a machine learning approach and a deep learning approach. The machine learning approach requires the features to be defined by using various methods and then using any technique such as Support Vector Machines (SVMs) to do the classification. Whereas, the deep learning approach makes it possible to do the whole detection process without explicitly defining the features to do the classification. The deep learning approach is majorly based on Convolutional Neural Networks (CNNs). 

Machine Learning Methods

  1. Scale-Invariant Feature Transform (SIFT)

 It is counted amongst the most involved algorithms as it performs four major tasks: scale-space peak selection, orientation assignment, key point description and key point localization. Some of the major advantages of using this algorithm include locality, detailed distinctiveness, real-time performance, the ability to extend to a wide range of different features and robustness. 

2. Histogram of Oriented Gradients (HOG) features

 It is a feature descriptor similar to Canny Edge Detector and SIFT. This uses the technique of counting occurrences of gradient orientation in a localized portion of the image. This descriptor mainly focuses on the shape of an object. It is better than most edge descriptors as it takes the help of the magnitude and the gradient angle to assess the object’s features. It then produces a histogram for the region it assessed using the magnitude and orientations of the gradient.  

3. Viola-Jones object detection framework

This object detection framework works best in the case of detecting human faces. This object detection framework combines the best of Haar-like features, Integral Images, the AdaBoost Algorithm and the Cascade Classifier in order to curate a system that is best in class for object detection and is highly accurate.  

 

Deep Learning Methods

  1. Region Proposals (R-CNN, Fast R-CNN, Faster R-CNN) In this method, the region proposal layer outputs bounding boxes around the objects of the image as a part of the region proposal network. The image gets divided under this process into some superpixels and then combined adjacent to the region. 
  2. You Only Look Once (YOLO) This algorithm works in real-time and helps recognise various objects in a picture. This algorithm uses a regression method, which helps provide class probabilities of the subjected image. It works by devoting the image into N grids with an equal dimensional region of SxS. 
  3. Deformable convolutional networks This method of mathematical operations allows the merging of two sets of information. With DCN, 2D offsets are added into the regular grid sampling locations into the standard convolution. This helps create free-form deformation of the sampling grid. This network filter is also known as a kernel or future detector. 
  4. Refinement Neural Network for Object Detection (RefineDet) This model is equally famous in object detection using deep learning and is often used as an alternative to YOLO, SSD and CNN models. This model generates a predetermined number of bounding boxes and scores that indicate the existence of the unique kinds of items in the boxes. Two major components of this model are the object detection module (ODM) and the anchor refinement module (ARM). 
  5. Retina-Net This object detection model is chosen to be the best-performing one, particularly in the case of dense and small-scale objects. That is why it is mainly used in aerial and satellite imagery. It is a one-stage object detection model which takes the help of a focal loss function to address the class imbalance while training. 

We shall learn about the deep learning methods in detail, but first, let us know what is machine learning, what is deep learning, and what is the difference between them. 

What is Machine Learning?

Machine learning is the application of Artificial Intelligence for making computers learn from the data given to it and then make decisions on their own similar to humans. It gives computers the ability to learn and make predictions based on the data and information that is fed to it and also through real-world interactions and observations. Machine learning, basically, is the process of using algorithms to analyze data and then learn from it to make predictions and determine things based on the given data. 

Machine learning algorithms can take decisions on themselves without being explicitly programmed for it. These algorithms make mathematical models based on the given data, known as a ‘training set’, to make the predictions. In machine learning algorithms, we need to provide the features to the system, to make them do the learning based on the given features, this process is called Feature Engineering.  

The day to day examples of machine learning applications is voice assistants, email-spam filtering, product recommendations, etc. 

How object detection using machine learning is done?

Object detection using machine learning is supervised in nature. Supervised learning is a machine learning process that utilises prelabelled training data and based on those datasets the machine tries to predict the outcomes of the given problem. Apart from object detection. Supervised learning can also be used in image classification, risk assessment, spam filtering etc. 

Now in the case of object detection deep learning, the area of application can greatly differ. The reason is image classification can only assess whether or not a particular object is present in the image but fails to tell its location of it. Whereas deep learning object detection can do all of it, as it uses convolution layers to detect visual features. 

Along with object detection deep learning, the dataset used for the supervised machine learning problem is always accompanied by a file that includes boundaries and classes of its objects. 

What is Deep Learning?

Deep learning, which is also sometimes called deep structured learning, is a class of machine learning algorithms. Deep learning uses a multi-layer approach to extract high-level features from the data that is provided to it. It doesn’t require the features to be provided manually for classification, instead, it tries to transform its data into an abstract representation. It simply learns by examples and uses it for future classification. Deep learning is influenced by the artificial neural networks (ANN) present in our brains.

Most of the deep learning methods implement neural networks to achieve the results. All the deep learning models require huge computation powers and large volumes of labeled data to learn the features directly from the data. The day to day applications of deep learning is news aggregation or fraud news detection, visual recognition, natural language processing, etc.

Machine learning and deep learning techniques for object recognition. Source 

Object Detection using Deep Learning

Now that we know about object detection and deep learning very well, we should know how we can perform object detection using deep learning

These are the most used deep learning models for object detection: 

1. R-CNN model family: It stands for Region-based Convolutional Neural Networks

    • R-CNN
    • Fast R-CNN
    • Faster R-CNN

2. YOLO model family: It stands for You Look Only Once

    • YOLOv1
    • YOLOv2 and YOLOv3

Let us look at them one by one and understand how they work.

The object detection process involves these steps to be followed:

  1. Taking the visual as an input, either by an image or a video.
  2. Divide the input visual into sections, or regions.
  3. Take each section individually, and work on it as a single image
  4. Passing these images into our Convolutional Neural Network (CNN) to classify them into possible classes.
  5. After the classification, we can combine all the images and generate the original input image, but also with the detected objects and their labels.

Region-based Convolutional Neural Networks (R-CNN) Family 

There are several object detection models under the R-CNN Family. These detection models are based on the region proposal structures. These features have made great development with time, increasing accuracy and efficiency.

The different models under R-CNN are:

  • R-CNN

The R-CNN method uses a process called selective search to find out the objects from the image. This algorithm generates a large number of regions and collectively works on them. These collections of regions are checked for having objects if they contain any object. The success of this method depends on the accuracy of the classification of objects. 

  • Fast-RCNN

The Fast-RCNN method uses the structure of R-CNN along with the SPP-net (Spatial Pyramid Pooling) to make the slow R-CNN model faster. The Fast-RCNN uses the SPP-net to calculate the CNN representation for the whole image only once. It then uses this representation to calculate the CNN representation for each patch generated by the selective search approach of R-CNN. The Fast-RCNN makes the process train from end-to-end. 

The Fast-RCNN model also includes the bounding box regression along with the training process. This makes both the processes of localization and classification in a single process, making the process faster. 

  • Faster-RCNN

The Faster-RCNN method is even faster than the Fast-RCNN. The Fast-RCNN was fast but the process of selective search and this process is replaced in Faster-RCNN by implementing RPN (Region Proposal Network). The RPN makes the process of selection faster by implementing a small convolutional network, which in turn, generates regions of interest. Along with RPN, this method also uses Anchor Boxes to handle the multiple aspect ratios and scale of objects. Faster-RCNN is one of the most accurate and efficient object detection algorithms.

R-CNNFast-RCNNFaster-RCNN
Test time per image50 seconds2 seconds0.2 seconds
Speed1x25x250x

You Look Only Once (YOLO) Family

The R-CNN approach that we saw above focuses on the division of a visual into parts and focus on the parts that have a higher probability of containing an object, whereas the YOLO framework focuses on the entire image as a whole and predicts the bounding boxes, then calculates its class probabilities to label the boxes. The family of YOLO frameworks is very fast object detectors. 

The different models of YOLO are discussed below:

  • YOLOv1

This model is also called the YOLO unified, for the reason that this model unifies the object detection and the classification model together as a single detection network. This was the first attempt to create a network that detects real-time objects very fast. YOLO only predicts a limited number of bounding boxes to achieve this goal.

  •  YOLOv2 and v3

YOLOv2 and YOLOv3 are the enhanced versions of the YOLOv1 framework. YOLOv2 is also called YOLO9000. The YOLOv1 framework makes several localization errors, and YOLOv2 improves this by focusing on the recall and the localization. The YOLOv2 uses batch normalization, anchor boxes, high-resolution classifiers, fine-grained features, multi-level classifiers, and Darknet19. All these features make v2 better than v1. The Darknet19 feature extractor contains 19 convolutional layers, 5 max-pooling layers, and a softmax layer for the classification of objects that are present in the image. 

The YOLOv3 method is the fastest and most accurate object detection method. It accurately classifies the objects by using logistic classifiers compared to the softmax approach used by YOLOv2. This makes us capable of making multi-label classifications. The YOLOv3 also uses Darknet53 as a feature extractor, which has 53 convolutional layers, more than the Darknet19 used by v2, and this makes it more accurate. It also uses a small object detector to detect all the small objects present in the image, which couldn’t be detected by using v1.

Must Read : Step-by-Step Methods To Build Your Own AI System Today

Summary

I hope the above overview of object detection and its implementation using deep learning was helpful to you and made you understand the core idea of object detection and how it is implemented in the real-world using various methods and specifically using deep learning. 

Object detection can be used in many areas to reduce human efforts and increase the efficiency of processes in various fields. Object detection, as well as deep learning, are areas that will be blooming in the future and making its presence across numerous fields. There is a lot of scope in these fields and also many opportunities for improvements. 

Popular AI and ML Blogs & Free Courses

Courses Offered by upGrad

upGrad has developed comprehensive online training programs on deep learning as well as machine learning in line with industry expectations. The training modules and education approach of upGrad help the students learn quickly and get ready for any assignment.

The main educational programs which upGrad offers are suitable for entry and mid-career level

1. PG Diploma in Machine Learning and AI: It is suitable for working professionals who would like to learn machine learning right from scratch and shift their career roles to Machine Learning Engineer, Data Scientist, AI Architect, Business Analyst or Product Analyst. 

2. Master of Science in Machine Learning and AI: It is a comprehensive 18-month program that helps individuals to get a masters in this field and get knowledge of this field along with having hands-on practical experience on a large number of projects. 

3. PG Certification in Machine Learning and Deep Learning: This course is focused on machine and deep learning. With this course, students can apply for positions like Machine Learning Engineer and Data Scientist.

Ads of upGrad blog

4. PG Certification in Machine Learning and NLP: It is a well-structured course for learning machine learning and natural language processing. The job opportunities for the learners are Data Scientist and Data Analyst.

upGrad has developed the curriculum of these programs for machine learning and deep learning in consideration of the machine learning principles, aspects, and major components of machine learning and the job opportunities so that skills are developed right from scratch. After completing the program from upGrad, tremendous machine learning career opportunities await you in diverse industries and various roles.

Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

The Bottom Line

Students can take any of the paths mentioned above to build their careers in machine learning and deep learning. upGrad’s placement support helps students to enhance their job prospects through exciting career opportunities on the job portal, career fairs and Hackathons as well as placement support. The future of deep learning is brighter with increasing demand and growth prospects, and also many individuals wanting to make a career in this field. Take up any of these courses and much more offered by upGrad to dive into machine learning career opportunities awaiting you.

Profile

Pavan Vadapalli

Blog Author
Director of Engineering @ upGrad. Motivated to leverage technology to solve problems. Seasoned leader for startups and fast moving orgs. Working on solving problems of scale and long term technology strategy.
Get Free Consultation

Selectcaret down icon
Select Area of interestcaret down icon
Select Work Experiencecaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Frequently Asked Questions (FAQs)

1What are the deep learning algorithms used in object detection?

Object detection is a computer vision task that refers to the process of locating and identifying multiple objects in an image. Deep learning algorithms like YOLO, SSD and R-CNN detect objects on an image using deep convolutional neural networks, a kind of artificial neural network inspired by the visual cortex. Deep convolutional neural networks are the most popular class of deep learning algorithms for object detection. The deep convolutional networks are trained on large datasets. These networks can detect objects with much more efficiency and accuracy than previous methods.

2Which algorithm is best for object detection?

There are many algorithms for object detection, ranging from simple boxes to complex Deep Networks. The industry standard right now is YOLO, which is short for You Only Look Once. YOLO is a simple and easy to implement neural network that classifies objects with relatively high accuracy. In a nutshell, a neural network is a system of interconnected layers that simulate how neurons in the brain communicate. Each layer has its own set of parameters, which are tweaked according to the data provided. The data that comes out of each layer is fed into the next layer, and so on, until we get a final prediction as the output.

3What are the difficulties you have faced in object identification?

There are many difficulties which we face while object identification. One of the difficulties is when the object is a picture of a scene. In such cases we need to know the position of the camera in the past and we should estimate the position of the moving object. Due to the changes with time, we may get a completely different image and it can't be matched. One way to solve this issue is to take the help of motion estimation. Another one is to do the re-computation with time difference.

Explore Free Courses

Suggested Blogs

15 Interesting MATLAB Project Ideas & Topics For Beginners [2024]
82459
Diving into the world of engineering and data science, I’ve discovered the potential of MATLAB as an indispensable tool. It has accelerated my c
Read More

by Pavan Vadapalli

09 Jul 2024

5 Types of Research Design: Elements and Characteristics
47126
The reliability and quality of your research depend upon several factors such as determination of target audience, the survey of a sample population,
Read More

by Pavan Vadapalli

07 Jul 2024

Biological Neural Network: Importance, Components & Comparison
50612
Humans have made several attempts to mimic the biological systems, and one of them is artificial neural networks inspired by the biological neural net
Read More

by Pavan Vadapalli

04 Jul 2024

Production System in Artificial Intelligence and its Characteristics
86790
The AI market has witnessed rapid growth on the international level, and it is predicted to show a CAGR of 37.3% from 2023 to 2030. The production sys
Read More

by Pavan Vadapalli

03 Jul 2024

AI vs Human Intelligence: Difference Between AI & Human Intelligence
112990
In this article, you will learn about AI vs Human Intelligence, Difference Between AI & Human Intelligence. Definition of AI & Human Intelli
Read More

by Pavan Vadapalli

01 Jul 2024

Career Opportunities in Artificial Intelligence: List of Various Job Roles
89553
Artificial Intelligence or AI career opportunities have escalated recently due to its surging demands in industries. The hype that AI will create tons
Read More

by Pavan Vadapalli

26 Jun 2024

Gini Index for Decision Trees: Mechanism, Perfect & Imperfect Split With Examples
70806
As you start learning about supervised learning, it’s important to get acquainted with the concept of decision trees. Decision trees are akin to
Read More

by MK Gurucharan

24 Jun 2024

Random Forest Vs Decision Tree: Difference Between Random Forest and Decision Tree
51730
Recent advancements have paved the growth of multiple algorithms. These new and blazing algorithms have set the data on fire. They help in handling da
Read More

by Pavan Vadapalli

24 Jun 2024

Basic CNN Architecture: Explaining 5 Layers of Convolutional Neural Network
270718
Introduction In the last few years of the IT industry, there has been a huge demand for once particular skill set known as Deep Learning. Deep Learni
Read More

by MK Gurucharan

21 Jun 2024

Schedule 1:1 free counsellingTalk to Career Expert
icon
footer sticky close icon