50 Must Know Big Data Interview Questions and Answers 2024: For Freshers & Experienced

Updated on 02 August, 2024

8.69K+ views
33 min read
Big Data Interview Questions and Answers

Introduction

The demand for potential candidates is increasing rapidly in the big data technologies field. There are plenty of opportunities in this field if you aspire to be part of this domain. The most fruitful domains under big data technologies are data analytics, data science, big data engineering, and so on. For getting success in admission in big data, it is crucial to understand what kind of questions are asked in the interviews and how to answer them. This article will help you to find a direction for the preparation of big data interview questions answers for freshers and experienced that will increase your chances of selection.

Attending a big data interview and wondering what are all the questions and discussions you will go through? Before attending a big data interview, it’s better to have an idea of the type of big data interview questions so that you can mentally prepare answers for them.

To help you out, I have created the top big data interview questions and answers guide to understand the depth and real-intend of big data interview questions.

Check out our free courses to get an edge over the competition.

You won’t belive how this Program Changed the Career of Students

Check out the scope of a career in big data.

We’re in the era of Big Data and analytics. With data powering everything around us, there has been a sudden surge in demand for skilled data professionals. Organizations are always on the lookout for upskilled individuals who can help them make sense of their heaps of data.

The number of jobs in data science is predicted to grow by 30% by 2026. This means there will be many more employment opportunities for people working with data. To make things easier for applicants and candidates, we have compiled a comprehensive list of big data interview questions. 

The keyword here is ‘upskilled’ and hence Big Data interviews are not really a cakewalk. There are some essential Big Data interview questions that you must know before you attend one. These will help you find your way through.

The questions have been arranged in an order that will help you pick up from the basics and reach a somewhat advanced level.

How To Prepare for Big Data Interview

Before we proceed further and understand the big data analytics interview questions directly, let us first understand the basic points for the preparation of this interview –

  • Draft a Compelling Resume – A resume is a piece of paper that reflects your accomplishments. However, you must modify your resume based on the role or position you are applying for. Your resume must reflect and compel the employer that you have gone thoroughly with the industry’s standards, history, vision, and culture. You must also mention your soft skills that are relevant to your role. 
  • Interview is a Two-sided Interaction – Apart from giving correct and accurate answers to the interview questions, you must not ignore the importance of asking your questions. Prepare a list of suitable questions in advance and ask them at favorable opportunities.
  • Research and Rehearse – You must research the most commonly asked questions which are asked in the big data analytics interviews. Prepare their answers in advance and rehearse these answers before you appear for the interview.

Big Data Interview Questions & Answers For Freshers & Experienced

Here is a list of some of the most common big data interview questions to help you prepare beforehand. This list can also apply to big data viva questions, especially if you are looking to prepare for a practical viva exam. 

1. Define Big Data and explain the Vs of Big Data.

This is one of the most introductory yet important Big Data interview questions.

It also doubles as one of the most common big data practical viva questions. 

The answer to this is quite straightforward:

Big Data can be defined as a collection of complex unstructured or semi-structured data sets which have the potential to deliver actionable insights.

The four Vs of Big Data are –
Volume – Talks about the amount of data.

In other words, the sheer amount of data generated, collected, and stored by organizations. 

Variety – Talks about the various formats of data.

Data comes in various forms, such as structured data (like databases), semi-structured data (XML, JSON), unstructured data (text, images, videos), and more. 

Velocity – Talks about the ever increasing speed at which the data is growing. Moreover, it denotes the speed of data generation processed in real time.
Veracity – Talks about the degree of accuracy of data available.

Big Data often involves data from multiple sources, which might be incomplete, inconsistent, or contain errors. Ensuring data quality and reliability is essential for making informed decisions. Verifying and maintaining data integrity through cleansing, validation, and quality checks become imperative to derive meaningful insights.

Big Data Tutorial for Beginners: All You Need to Know

2. How is Hadoop related to Big Data?

When we talk about Big Data, we talk about Hadoop. So, this is another Big Data interview question that you will definitely face in an interview.

This one also doubles as one of the most commonly asked BDA viva questions.

Hadoop is an open-source framework for storing, processing, and analyzing complex unstructured data sets for deriving insights and intelligence.

Hadoop is closely linked to Big Data because it’s a tool specifically designed to handle massive and varied types of data that are typically challenging for regular systems to manage. Hadoop’s main job is to store this huge amount of data across many computers (HDFS) and process it in a way that makes it easier to understand and use (MapReduce). 

Essentially, Hadoop is a key player in the Big Data world, helping organizations deal with their large and complex data more easily for analysis and decision-making.

3. Define HDFS and YARN, and talk about their respective components.

Now that we’re in the zone of Hadoop, the next Big Data interview question you might face will revolve around the same.

This is also among the commonly asked big data interview questions for experienced professionals. Hence, even if you have expert knowledge in this field, make sure that you prepare this question thoroughly.

The HDFS is Hadoop’s default storage unit and is responsible for storing different types of data in a distributed environment.

HDFS has the following two components:

NameNode – This is the master node that has the metadata information for all the data blocks in the HDFS.

The NameNode is like the manager of the Hadoop system. It keeps track of where all the files are stored in the Hadoop cluster and manages the file system’s structure and organization.

The NameNode is like the manager of the Hadoop system. It keeps track of where all the files are stored in the Hadoop cluster and manages the file system’s structure and organization.

DataNode – These are the nodes that act as slave nodes and are responsible for storing the data.

DataNodes are like storage units in the Hadoop cluster. They store the actual data blocks that make up the files. They follow instructions from the NameNode and store, retrieve, and replicate data as needed. YARN, short for Yet Another Resource Negotiator, is responsible for managing resources and providing an execution environment for the said processes.
The two main components of YARN are –
ResourceManager – Responsible for allocating resources to respective NodeManagers based on the needs.

It oversees allocation to various applications through the Scheduler, ensuring fair distribution based on policies like FIFO or fair sharing. Additionally, the ApplicationManager is responsible for coordinating and monitoring application execution, handling job submissions, and managing ApplicationMasters.

NodeManager – Executes tasks on every DataNode.
7 Interesting Big Data Projects You Need To Watch Out

It operates on individual nodes by managing resources, executing tasks within containers, and reporting container statuses to the ResourceManager. It efficiently monitors and allocates resources to tasks, ensuring optimal resource utilization while managing task execution and failure at the node level.

4. What do you mean by commodity hardware?

This is yet another Big Data interview question you’re most likely to come across in any interview you sit for.

As one of the most common big data questions, make sure you are prepared to answer the same.

Commodity Hardware refers to the minimal hardware resources needed to run the Apache Hadoop framework. Any hardware that supports Hadoop’s minimum requirements is known as ‘Commodity Hardware.’

It meets Hadoop’s basic needs and is cost-effective and scalable, making it accessible for setting up Hadoop clusters without requiring pricey specialized gear. This approach lets many businesses use regular, affordable hardware to tap into Hadoop’s powerful data processing abilities.

5. Define and describe the term FSCK.

When you are preparing big data testing interview questions, make sure that you cover FSCK. This question can be asked if the interviewer is covering HADOOP questions. 

FSCK stands for Filesystem Check. It is a command used to run a Hadoop summary report that describes the state of HDFS. It only checks for errors and does not correct them. This command can be executed on either the whole system or a subset of files.

File System (HDFS), FSCK, is a utility that verifies the health and integrity of the HDFS file system by examining its structure and metadata information. It identifies missing, corrupt, or misplaced data blocks and provides information about the overall file system’s status, including the number of data blocks, their locations, and replication status. 

Read: Big data jobs and its career opportunities

6. What is the purpose of the JPS command in Hadoop?

This is one of the big data engineer interview questions that might be included in interviews focused on the Hadoop ecosystem and tools. 

The JPS command is used for testing the working of all the Hadoop daemons. It specifically tests daemons like NameNode, DataNode, ResourceManager, NodeManager and more.
(In any Big Data interview, you’re likely to find one question on JPS and its importance.)
Big Data: Must Know Tools and TechnologiesBig Data: Must Know Tools and Technologies

This command is especially useful in verifying whether the different components of a Hadoop cluster, including the core services and auxiliary processes, are up and running.

7. Name the different commands for starting up and shutting down Hadoop Daemons.

This is one of the most important Big Data interview questions to help the interviewer gauge your knowledge of commands.

To start all the daemons:
./sbin/start-all.sh

To shut down all the daemons:
./sbin/stop-all.sh

8. Why do we need Hadoop for Big Data Analytics?

This is one of the most anticipated big data Hadoop interview questions. 

This Hadoop interview questions test your awareness regarding the practical aspects of Big Data and Analytics.

In most cases, Hadoop helps in exploring and analyzing large and unstructured data sets. Hadoop offers storage, processing and data collection capabilities that help in analytics.

Knowledge Read: Big data jobs & Career planning

These capabilities make Hadoop a fundamental tool in handling the scale and complexity of Big Data, empowering organizations to derive valuable insights for informed decision-making and strategic planning.

9. Explain the different features of Hadoop.

Listed in many Big Data Interview Questions and Answers, the best answer to this is –

Open-Source – Hadoop is an open-sourced platform. It allows the code to be rewritten or modified according to user and analytics requirements.
Scalability – Hadoop supports the addition of hardware resources to the new nodes.
Data Recovery – Hadoop follows replication which allows the recovery of data in the case of any failure.
Data Locality – This means that Hadoop moves the computation to the data and not the other way round. This way, the whole process speeds up.

10. Define the Port Numbers for NameNode, Task Tracker and Job Tracker.

Understanding port numbers, configurations, and components within Hadoop clusters is a common part of big data scenario based interview questions for roles handling Hadoop administration. 

NameNode – Port 50070. 

This port allows users/administrators to access the Hadoop Distributed File System (HDFS) information and its status through a web browser.

Task Tracker – Port 50060. 

This port corresponds to TaskTracker’s web UI, providing information about the tasks it handles and allowing monitoring and management through a web browser.Job Tracker – Port 50030. 

This port is associated with the JobTracker’s web UI. It allows users to monitor and track the progress of MapReduce jobs, view job history, and manage job-related information through a web browser.

11. What do you mean by indexing in HDFS?

HDFS indexes data blocks based on their sizes. The end of a data block points to the address of where the next chunk of data blocks get stored. The DataNodes store the blocks of data while NameNode stores these data blocks.
Big Data Applications in Pop-Culture

12. What are Edge Nodes in Hadoop?

This is one of the top big data analytics important questions which can also be asked as data engineer interview questions. Edge nodes refer to the gateway nodes which act as an interface between Hadoop cluster and the external network. These nodes run client applications and cluster management tools and are used as staging areas as well. Enterprise-class storage capabilities are required for Edge Nodes, and a single edge node usually suffices for multiple Hadoop clusters.

13. What are some of the data management tools used with Edge Nodes in Hadoop?

This Big Data interview question aims to test your awareness regarding various tools and frameworks.

Oozie, Ambari, Pig and Flume are the most common data management tools that work with Edge Nodes in Hadoop.

14. Explain the core methods of a Reducer.

This is also among the most commonly asked big data analytics interview questions. 

There are three core methods of a reducer. They are-

setup() – This is used to configure different parameters like heap size, distributed cache and input data.

This method is invoked once at the beginning of each reducer task before processing any keys or values. It allows developers to perform initialization tasks and configuration settings specific to the reducer task. 

reduce() – A parameter that is called once per key with the concerned reduce task.

It is where the actual data processing and reduction take place. The method takes in a key and an iterable collection of values corresponding to that key. 

cleanup() – Clears all temporary files and called only at the end of a reducer task.

The cleanup() method is called once at the end of each reducer task after all the keys have been processed and the reduce() method has completed execution. 

15. Talk about the different tombstone markers used for deletion purposes in HBase.

This Big Data interview question dives into your knowledge of HBase and its working.
There are three main tombstone markers used for deletion in HBase. They are-

Family Delete Marker – For marking all the columns of a column family.

When applied, it signifies the intent to delete all versions of all columns within that column family. This marker acts at the column family level, allowing users to delete an entire family of columns across all rows in an HBase table.

Version Delete Marker – For marking a single version of a single column.

It targets and indicates the deletion of only one version of a specific column. This delete marker permits users to remove a specific version of a column value while retaining other versions associated with the same column.

Column Delete Marker – For marking all the versions of a single column.

This delete marker operates at the column level, signifying the removal of all versions of a specific column across different timestamps or versions within an individual row in the HBase table.

Big Data Engineers: Myths vs. Realities

16. How can Big Data add value to businesses?

One of the most common big data interview question. In the present scenario, Big Data is everything. If you have data, you have the most powerful tool at your disposal. Big Data Analytics helps businesses to transform raw data into meaningful and actionable insights that can shape their business strategies. The most important contribution of Big Data to business is data-driven business decisions. Big Data makes it possible for organizations to base their decisions on tangible information and insights.

Furthermore, Predictive Analytics allows companies to craft customized recommendations and marketing strategies for different buyer personas. Together, Big Data tools and technologies help boost revenue, streamline business operations, increase productivity, and enhance customer satisfaction. In fact, anyone who’s not leveraging Big Data today is losing out on an ocean of opportunities. 

Check out the best big x`data courses at upGrad

17. How do you deploy a Big Data solution?

This question also falls under one of the highest anticipated big data analytics viva questions.

You can deploy a Big Data solution in three steps:

  • Data Ingestion – This is the first step in the deployment of a Big Data solution. You begin by collecting data from multiple sources, be it social media platforms, log files, business documents, anything relevant to your business. Data can either be extracted through real-time streaming or in batch jobs.
  • Data Storage – Once the data is extracted, you must store the data in a database. It can be HDFS or HBase. While HDFS storage is perfect for sequential access, HBase is ideal for random read/write access.
  • Data Processing – The last step in the deployment of the solution is data processing. Usually, data processing is done via frameworks like Hadoop, Spark, MapReduce, Flink, and Pig, to name a few.

18. How is NFS different from HDFS?

This question also qualifies as one of the big data scenario based questions that you may be asked in an interview.

The Network File System (NFS) is one of the oldest distributed file storage systems, while Hadoop Distributed File System (HDFS) came to the spotlight only recently after the upsurge of Big Data. 

The table below highlights some of the most notable differences between NFS and HDFS:

NFS HDFS
It can both store and process small volumes of data.  It is explicitly designed to store and process Big Data.
The data is stored in dedicated hardware. Data is divided into data blocks that are distributed on the local drives of the hardware. 
In the case of system failure, you cannot access the data.  Data can be accessed even in the case of a system failure.
Since NFS runs on a single machine, there’s no chance for data redundancy. HDFS runs on a cluster of machines, and hence, the replication protocol may lead to redundant data.

19. List the different file permissions in HDFS for files or directory levels.

One of the common big data interview questions. The Hadoop distributed file system (HDFS) has specific permissions for files and directories. There are three user levels in HDFS – Owner, Group, and Others. For each of the user levels, there are three available permissions:

  • read (r)
  • write (w)
  • execute(x).

These three permissions work uniquely for files and directories.

For files –

  • The r permission is for reading a file
  • The w permission is for writing a file.

Although there’s an execute(x) permission, you cannot execute HDFS files.

For directories –

  • The r permission lists the contents of a specific directory.
  • The w permission creates or deletes a directory.
  • The X permission is for accessing a child directory.

20. Elaborate on the processes that overwrite the replication factors in HDFS.

In HDFS, there are two ways to overwrite the replication factors – on file basis and on directory basis.

On File Basis

In this method, the replication factor changes according to the file using Hadoop FS shell. The following command is used for this:

$hadoop fs – setrep –w2/my/test_file

Here, test_file refers to the filename whose replication factor will be set to 2.

On Directory Basis

This method changes the replication factor according to the directory, as such, the replication factor for all the files under a particular directory, changes. The following command is used for this:

$hadoop fs –setrep –w5/my/test_dir

Here, test_dir refers to the name of the directory for which the replication factor and all the files contained within will be set to 5.

21. Name the three modes in which you can run Hadoop.

One of the most common question in any big data interview. The three modes are:

  • Standalone mode – This is Hadoop’s default mode that uses the local file system for both input and output operations. The main purpose of the standalone mode is debugging. It does not support HDFS and also lacks custom configuration required for mapred-site.xml, core-site.xml, and hdfs-site.xml files. 
  • Pseudo-distributed mode – Also known as the single-node cluster, the pseudo-distributed mode includes both NameNode and DataNode within the same machine. In this mode, all the Hadoop daemons will run on a single node, and hence, the Master and Slave nodes are the same.
  • Fully distributed mode – This mode is known as the multi-node cluster wherein multiple nodes function simultaneously to execute Hadoop jobs. Here, all the Hadoop daemons run on different nodes. So, the Master and Slave nodes run separately.

22. Explain “Overfitting.”

This is one of the most common and easy big data interview questions you should not skip. It can also be a part of big data practical viva questions if you are a student in this stream. Hence, make sure you are thoroughly familiar with the answer below.

Overfitting refers to a modeling error that occurs when a function is tightly fit (influenced) by a limited set of data points. Overfitting results in an overly complex model that makes it further difficult to explain the peculiarities or idiosyncrasies in the data at hand. As it adversely affects the generalization ability of the model, it becomes challenging to determine the predictive quotient of overfitted models. These models fail to perform when applied to external data (data that is not part of the sample data) or new datasets. 

Overfitting is one of the most common problems in Machine Learning. A model is considered to be overfitted when it performs better on the training set but fails miserably on the test set. However, there are many methods to prevent the problem of overfitting, such as cross-validation, pruning, early stopping, regularization, and assembling.

23. What is Feature Selection?

This is one of the popular Big Data analytics important questions which is also often featured as data engineer interview questions. Feature selection refers to the process of extracting only the required features from a specific dataset. When data is extracted from disparate sources, not all data is useful at all times – different business needs call for different data insights. This is where feature selection comes in to identify and select only those features that are relevant for a particular business requirement or stage of data processing.

The main goal of feature selection is to simplify ML models to make their analysis and interpretation easier. Feature selection enhances the generalization abilities of a model and eliminates the problems of dimensionality, thereby, preventing the possibilities of overfitting. Thus, feature selection provides a better understanding of the data under study, improves the prediction performance of the model, and reduces the computation time significantly. 

Feature selection can be done via three techniques:

  • Filters method

In this method, the features selected are not dependent on the designated classifiers. A variable ranking technique is used to select variables for ordering purposes. During the classification process, the variable ranking technique takes into consideration the importance and usefulness of a feature. The Chi-Square Test, Variance Threshold, and Information Gain are some examples of the filters method.

  • Wrappers method

In this method, the algorithm used for feature subset selection exists as a ‘wrapper’ around the induction algorithm. The induction algorithm functions like a ‘Black Box’ that produces a classifier that will be further used in the classification of features. The major drawback or limitation of the wrappers method is that to obtain the feature subset, you need to perform heavy computation work. Genetic Algorithms, Sequential Feature Selection, and Recursive Feature Elimination are examples of the wrappers method.

  • Embedded method 

The embedded method combines the best of both worlds – it includes the best features of the filters and wrappers methods. In this method, the variable selection is done during the training process, thereby allowing you to identify the features that are the most accurate for a given model. L1 Regularisation Technique and Ridge Regression are two popular examples of the embedded method.

24. Define “Outliers.”

As one of the most commonly asked big data viva questions and interview questions, ensure that you are thoroughly prepared to answer the following.

An outlier refers to a data point or an observation that lies at an abnormal distance from other values in a random sample. In other words, outliers are the values that are far removed from the group; they do not belong to any specific cluster or group in the dataset. The presence of outliers usually affects the behavior of the model – they can mislead the training process of ML algorithms. Some of the adverse impacts of outliers include longer training time, inaccurate models, and poor outcomes. 

However, outliers may sometimes contain valuable information. This is why they must be investigated thoroughly and treated accordingly.

25. Name some outlier detection techniques.

Again, one of the most important big data interview questions. Here are six outlier detection methods:

  • Extreme Value Analysis – This method determines the statistical tails of the data distribution. Statistical methods like ‘z-scores’ on univariate data are a perfect example of extreme value analysis.
  • Probabilistic and Statistical Models – This method determines the ‘unlikely instances’ from a ‘probabilistic model’ of data. A good example is the optimization of Gaussian mixture models using ‘expectation-maximization’.
  • Linear Models – This method models the data into lower dimensions. Proximity-based Models – In this approach, the data instances that are isolated from the data group are determined by Cluster, Density, or by the Nearest Neighbor Analysis.
  • Information-Theoretic Models – This approach seeks to detect outliers as the bad data instances that increase the complexity of the dataset.
  • High-Dimensional Outlier Detection – This method identifies the subspaces for the outliers according to the distance measures in higher dimensions.

26. Explain Rack Awareness in Hadoop.

If you are a student preparing for your practical exam, make sure that you prepare Rack Awareness in Hadoop. This can also be asked as one of the BDA viva questions.

Rack Awareness is one of the popular big data interview questions. Rach awareness is an algorithm that identifies and selects DataNodes closer to the NameNode based on their rack information. It is applied to the NameNode to determine how data blocks and their replicas will be placed. During the installation process, the default assumption is that all nodes belong to the same rack.  

Rack awareness helps to:

  • Improve data reliability and accessibility.
  • Improve cluster performance.
  • Improve network bandwidth. 
  • Keep the bulk flow in-rack as and when possible.
  • Prevent data loss in case of a complete rack failure.

27. Can you recover a NameNode when it is down? If so, how?

This is one of the most common big data interview questions for experienced professionals.

Yes, it is possible to recover a NameNode when it is down. Here’s how you can do it:

  • Use the FsImage (the file system metadata replica) to launch a new NameNode. 
  • Configure DataNodes along with the clients so that they can acknowledge and refer to newly started NameNode.
  • When the newly created NameNode completes loading the last checkpoint of the FsImage (that has now received enough block reports from the DataNodes) loading process, it will be ready to start serving the client. 

However, the recovery process of a NameNode is feasible only for smaller clusters. For large Hadoop clusters, the recovery process usually consumes a substantial amount of time, thereby making it quite a challenging task. 

28. Name the configuration parameters of a MapReduce framework.

The configuration parameters in the MapReduce framework include:

  • The input format of data.
  • The output format of data.
  • The input location of jobs in the distributed file system.
  • The output location of jobs in the distributed file system.
  • The class containing the map function
  • The class containing the reduce function
  • The JAR file containing the mapper, reducer, and driver classes.

Learn: Mapreduce in big data

Learn Online Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.

29. What is a Distributed Cache? What are its benefits?

Any Big Data Interview Question and Answers guide won’t complete without this question. Distributed cache in Hadoop is a service offered by the MapReduce framework used for caching files. If a file is cached for a specific job, Hadoop makes it available on individual DataNodes both in memory and in system where the map and reduce tasks are simultaneously executing. This allows you to quickly access and read cached files to populate any collection (like arrays, hashmaps, etc.) in a code.

Distributed cache offers the following benefits:

  • It distributes simple, read-only text/data files and other complex types like jars, archives, etc. 
  • It tracks the modification timestamps of cache files which highlight the files that should not be modified until a job is executed successfully.

30. What is a SequenceFile in Hadoop?

In Hadoop, a SequenceFile is a flat-file that contains binary key-value pairs. It is most commonly used in MapReduce I/O formats. The map outputs are stored internally as a SequenceFile which provides the reader, writer, and sorter classes. 

There are three SequenceFile formats:

  • Uncompressed key-value records
  • Record compressed key-value records (only ‘values’ are compressed).
  • Block compressed key-value records (here, both keys and values are collected in ‘blocks’ separately and then compressed). 

31. Explain the role of a JobTracker.

One of the common big data interview questions. The primary function of the JobTracker is resource management, which essentially means managing the TaskTrackers. Apart from this, JobTracker also tracks resource availability and handles task life cycle management (track the progress of tasks and their fault tolerance).

Some crucial features of the JobTracker are:

  • It is a process that runs on a separate node (not on a DataNode).
  • It communicates with the NameNode to identify data location.
  • It tracks the execution of MapReduce workloads.
  • It allocates TaskTracker nodes based on the available slots.
  • It monitors each TaskTracker and submits the overall job report to the client.
  • It finds the best TaskTracker nodes to execute specific tasks on particular nodes.

32. Name the common input formats in Hadoop.

Hadoop has three common input formats:

  • Text Input Format – This is the default input format in Hadoop.
  • Sequence File Input Format – This input format is used to read files in a sequence.
  • Key-Value Input Format – This input format is used for plain text files (files broken into lines).

33. What is the need for Data Locality in Hadoop?

One of the important big data interview questions. In HDFS, datasets are stored as blocks in DataNodes in the Hadoop cluster. When a  MapReduce job is executing, the individual Mapper processes the data blocks (Input Splits). If the data does is not present in the same node where the Mapper executes the job, the data must be copied from the DataNode where it resides over the network to the Mapper DataNode.

When a MapReduce job has over a hundred Mappers and each Mapper DataNode tries to copy the data from another DataNode in the cluster simultaneously, it will lead to network congestion, thereby having a negative impact on the system’s overall performance. This is where Data Locality enters the scenario. Instead of moving a large chunk of data to the computation, Data Locality moves the data computation close to where the actual data resides on the DataNode. This helps improve the overall performance of the system, without causing unnecessary delay.

34. What are the steps to achieve security in Hadoop?

In Hadoop, Kerberos – a network authentication protocol – is used to achieve security. Kerberos is designed to offer robust authentication for client/server applications via secret-key cryptography. 

When you use Kerberos to access a service, you have to undergo three steps, each of which involves a message exchange with a server. The steps are as follows:

  • Authentication – This is the first step wherein the client is authenticated via the authentication server, after which a time-stamped TGT (Ticket Granting Ticket) is given to the client.
  • Authorization – In the second step, the client uses the TGT for requesting a service ticket from the TGS (Ticket Granting Server).
  • Service Request – In the final step, the client uses the service ticket to authenticate themselves to the server. 

35. How can you handle missing values in Big Data?

Final question in our big data interview questions and answers guide. Missing values refer to the values that are not present in a column. It occurs when there’s is no data value for a variable in an observation. If missing values are not handled properly, it is bound to lead to erroneous data which in turn will generate incorrect outcomes. Thus, it is highly recommended to treat missing values correctly before processing the datasets. Usually, if the number of missing values is small, the data is dropped, but if there’s a bulk of missing values, data imputation is the preferred course of action. 

In Statistics, there are different ways to estimate the missing values. These include regression, multiple data imputation, listwise/pairwise deletion, maximum likelihood estimation, and approximate Bayesian bootstrap.

36. What command should I use to format the NameNode?

This also falls under the umbrella of big data analytics important questions. Here’s the answer:

The command to format the NameNode is “$ hdfs namenode -format”

37. Do you like good data or good models more? Why?

You may face these big data scenario based interview questions in interviews.

Although it is a difficult topic, it is frequently asked in big data interviews. You are asked to choose between good data or good models. You should attempt to respond to it from your experience as a candidate. Many businesses have already chosen their data models because they want to adhere to a rigid evaluation process. Good data can change the game in this situation. The opposite is also true as long as a model is selected based on reliable facts.

Answer it based on your own experience. Though it is challenging to have both in real-world projects, don’t say that having good data and good models is vital.

38. Will you speed up the code or algorithms you use?

One of the top big data analytics important questions is undoubtedly this one. Always respond “Yes” when asked this question. Performance in the real world is important and is independent of the data or model you are utilizing in your project.

If you have any prior experience with code or algorithm optimization, the interviewer may be very curious to hear about it. It definitely relies on the previous tasks a newbie worked on. Candidates with experience can also discuss their experiences appropriately. However, be truthful about your efforts; it’s okay if you haven’t previously optimized any code. You can succeed in the big data interview if you just share your actual experience with the interviewer.

39. What methodology do you use for data preparation?

One of the most important phases in big data projects is data preparation. There may be at least one question focused on data preparation in a big data interview. This question is intended to elicit information from you on the steps or safety measures you employ when preparing data.

As you are already aware, data preparation is crucial to obtain the information needed for further modeling. The interviewer should hear this from you. Additionally, be sure to highlight the kind of model you’ll be using and the factors that went into your decision. Last but not least, you should also go over keywords related to data preparation, such as variables that need to be transformed, outlier values, unstructured data, etc.

40. Tell us about data engineering.

Big data is also referred to as data engineering. It focuses on how data collection and research are applied. The data produced by different sources is raw data. Data engineering assists in transforming this raw data into informative and valuable insights. 

This is one of the top motadata interview questions asked by the interviewer. Make sure to practice it among other motadata interview questions to strengthen your preparation.

41. How well-versed are you in collaborative filtering?

A group of technologies known as collaborative filtering predict which products a specific consumer will like based on the preferences of a large number of people. It is merely the technical term for asking others for advice.

Ensure you do not skip this because it can be one of the big data questions asked in your interview.

42. What does a block in the Hadoop Distributed File System (HDFS) mean?

When a file is placed in HDFS, the entire file system is broken down into a collection of blocks, and HDFS is completely unaware of the contents of the file. Hadoop requires blocks to be 128MB in size. Individual files may have a different value for this.

43. Give examples of active and passive Namenodes.

The answer is that Active NameNodes operate and function within a cluster, whilst Passive NameNodes have similar data to Active NameNodes.

44. What criteria will you use to define checkpoints?

A checkpoint is a key component of keeping the HDFS filesystem metadata up to date. By combining fsimage and the edit log, it provides file system metadata checkpoints. Checkpoint is the name of the newest iteration of fsimage.

45. What is the primary distinction between Sqoop and distCP?

DistCP is used for data transfers between clusters, whereas Sqoop is solely used for data transfers between Hadoop and RDBMS.

Sqoop and DistCP serve different data transfer needs within the Hadoop ecosystem. Sqoop specializes in bidirectional data transfers between Hadoop and relational databases (RDBMS), allowing seamless import and export of structured data. DistCP works at the Hadoop Distributed File System (HDFS) level, breaking data into chunks and performing parallel data transfers across nodes or clusters, ensuring high-speed, fault-tolerant data movement.

You need not elaborate so much when asked one of these big data testing interview questions, but make sure that you stay one step ahead in case your interviewer asks you to.

46. How can unstructured data be converted into structured data?

Big Data changed the field of data science for many reasons, one of which is the organizing of unstructured data. The unstructured data is converted into structured data to enable accurate data analysis. You should first describe the differences between these two categories of data in your response to such big data interview questions before going into detail about the techniques you employ to convert one form of data into another. Share your personal experience while highlighting the importance of machine learning in data transformation.

47. How much data is required to produce a reliable result?

This can also be one of the big data engineer interview questions if you are applying for a similar job position.

Ans. Every company is unique, and every firm is evaluated differently. Therefore, there will never be enough data and no correct response. The amount of data needed relies on the techniques you employ to have a great chance of obtaining important results.

A strong data collection strategy greatly influences result accuracy and reliability. Additionally, leveraging advanced analytics and machine learning techniques can boost insights from smaller datasets, highlighting the importance of using appropriate analysis methods.

48. Do other parallel computing systems and Hadoop differ from one another? How?

Yes, they do. Hadoop is a distributed file system. It enables us to control data redundancy while storing and managing massive volumes of data in a cloud of computers.

The key advantage of this is that it is preferable to handle the data in a distributed manner because it is stored across numerous nodes. Instead of wasting time sending data across the network, each node may process the data that is stored there.

In comparison, a relational database computer system allows for real-time data querying but storing large amounts of data in tables, records, and columns is inefficient.

49. What is a Backup Node?

As one of the common big data analytics interview questions, prepare the answer to this well.

The Backup Node is an expanded Checkpoint Node that supports both Checkpointing and Online Streaming of File System Edits. It forces synchronization with Namenode and functions similarly to Checkpoint. The file system namespace is kept up to date in memory by the Backup Node. The backup node must store the current state from memory to generate a new checkpoint in an image file.

50.  What do you mean by Google BigQuery?

This can be categorized under uncommon but nevertheless important big query interview questions. Familiarize yourself with the answer given below.

Google BigQuery is a fully managed, serverless cloud-based data warehouse provided by Google Cloud Platform. It’s designed for high-speed querying and analyzing large datasets using SQL-like queries. BigQuery offers scalable and cost-effective data storage and processing without requiring infrastructure management, making it suitable for real-time analytics and data-driven decision-making.

Are you willing to gain an advancement in your learning which can help you to make your career better with us?

This question is often asked in the last part of the interview stage. The answer to this question varies from person to person. It depends on your current skills and qualifications and also your responsibilities towards your family. But this question is a great opportunity to show your enthusiasm and spark for learning new things. You must try to answer this question honestly and straightforwardly. At this point, you can also ask the company about its mentoring and coaching policies for its employees. You must also keep in mind that there are various programs readily available online and answer this question accordingly.

Do you have any questions for us?

As discussed earlier, the interview is a two-way process. You are also open to asking questions. But, it is essential to understand what to ask and when to ask. Usually, it is advised to keep your questions for the last. However, it also depends on the flow of your interview. You must keep a note of the time that your question can take and also track how your overall discussion has gone. Accordingly, you can ask questions from the interviewer and must not hesitate to seek any clarification.

Conclusion

We hope our Big Data Interview Questions and Answers for freshers and experienced guide is helpful. We will be updating the guide regularly to keep you updated.

If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.

Frequently Asked Questions (FAQs)

1. What is Flume in data management?

Flume is a data management tool that is distributed, reliable, and flexible. It can aggregate and move huge amounts of data from various data sources. Its architecture is similar to that of the Hadoop Distributed File System (HDFS). It consists of an agent that helps the client communicate with the HDFS. This agent consists of a source, channel, and sink. The source extracts the unstructured data from the client and is based on an event-driven model. The channel is a buffer queue that temporarily stores the data, controls the speed, and prevents the loss of packets. The sink is the final data that can be stored in the HDFS. This is how Flume does data management.

2. How do we detect outliers?

Outliers are unique points that are far away and abnormal compared to other data points. Sometimes, outliers are considered noise, while in some cases, they are considered to be valuable sources of information. Outliers can be detected by using the clustering technique. The points far away from all the clusters can be called outliers. Plotting techniques like box plots, scatter plots, and histograms can be used for outlier detection. Supervised methods can be used, e.g., modelling to find the normal objects and considering those points that don't fit in this model as outliers. Statistical approaches based on distance and mathematical functions also help in detecting outliers.

3. What are JAR files, and what are their uses?

JAR stands for Java Archives. It consists of files that aggregate various Java class files, software, libraries, and metadata compressed and stored as a single unit. It is a cross-platform archive format. JAR contains manifest files, XML-based configurations, JSON data, texts, audio, images, etc. It works well with applets too. They are used for lossless data decompression, archiving, packing and unpacking of files, etc. Any Java Runtime Environment (JRE) can be linked to the java libraries within the JAR files. This makes code execution platform-independent.

4. What is Flume in data management?

Flume is a data management tool that is distributed, reliable, and flexible. It can aggregate and move huge amounts of data from various data sources. Its architecture is similar to that of the Hadoop Distributed File System (HDFS). It consists of an agent that helps the client communicate with the HDFS. This agent consists of a source, channel, and sink. The source extracts the unstructured data from the client and is based on an event-driven model. The channel is a buffer queue that temporarily stores the data, controls the speed, and prevents the loss of packets. The sink is the final data that can be stored in the HDFS. This is how Flume does data management.

5. How do we detect outliers?

Outliers are unique points that are far away and abnormal compared to other data points. Sometimes, outliers are considered noise, while in some cases, they are considered to be valuable sources of information. Outliers can be detected by using the clustering technique. The points far away from all the clusters can be called outliers. Plotting techniques like box plots, scatter plots, and histograms can be used for outlier detection. Supervised methods can be used, e.g., modelling to find the normal objects and considering those points that don't fit in this model as outliers. Statistical approaches based on distance and mathematical functions also help in detecting outliers.

6. What are JAR files, and what are their uses?

JAR stands for Java Archives. It consists of files that aggregate various Java class files, software, libraries, and metadata compressed and stored as a single unit. It is a cross-platform archive format. JAR contains manifest files, XML-based configurations, JSON data, texts, audio, images, etc. It works well with applets too. They are used for lossless data decompression, archiving, packing and unpacking of files, etc. Any Java Runtime Environment (JRE) can be linked to the java libraries within the JAR files. This makes code execution platform-independent.

7. What are some common Big Data interview questions for someone with 2 years of experience?

For candidates with 2 years of experience, interview questions often focus on fundamental Big Data concepts and tools. Expect questions about the basics of Hadoop architecture, the role of HDFS and MapReduce, working with data in Hive and Pig, and basic performance tuning. You may also be asked to demonstrate your understanding of data ingestion tools like Sqoop and Flume, and your experience with scripting and query languages such as Python and SQL.

8. What are some common Big Data interview questions for someone with 5 years of experience?

For candidates with 5 years of experience, interview questions typically delve deeper into advanced topics and your practical experience. You should be prepared to discuss complex data processing scenarios, optimization of Hadoop jobs, and the integration of various Big Data tools. Expect questions on advanced Spark optimizations, managing and orchestrating data workflows with tools like Apache NiFi or Airflow, and your experience with real-time data processing frameworks like Apache Kafka and Flink. Additionally, be ready to showcase your knowledge in data modeling, data security, and performance tuning of large-scale data systems.

Did you find this article helpful?

Mohit Soni

Mohit Soni is working as the Program Manager for the BITS Pilani Big Data Engineering Program. He has been working with the Big Data Industry and BITS Pilani for the creation of this program. He is also an alumnus of IIT Delhi.

See More

RELATED PROGRAMS

Explore Free Courses



SUGGESTED BLOGS

From IT to Big Data – BITS Pilani Launches PG Program in Association with UpGrad

5.73K+

From IT to Big Data – BITS Pilani Launches PG Program in Association with UpGrad

Looking to upskill IT professionals for a $100 billion opportunity in Data and Digital, BITS Pilani has launched a new program in Big Data Engineering, in association with UpGrad. As per recent industry estimates, radical technology changes and increasing automation is expected to lead to an elimination of almost 20-30% jobs in the Indian IT sector, amounting to over 1 million layoffs. Most of these jobs need to be repositioned to avoid a net loss of jobs in this sector. New age technologies in digital and data, which are re-defining several existing roles. It represents an estimated $100 billion revenue opportunity for the IT industry and can potentially create 1.5-2 million additional jobs in the sector, by 2025. The most important task ahead, for the young professionals working in the IT and allied sectors, and who form a large part of India’s consumption story and its middle class, is to re-skill while working. The rapid changes occurring across industries and businesses are likely to affect them the most. upGrad’s Exclusive Software Development Webinar for you – SAAS Business – What is So Different? document.createElement('video'); https://cdn.upgrad.com/blog/mausmi-ambastha.mp4   For these professionals, online education presents a valuable option to stay relevant without quitting their jobs. Recognizing the needs of these professionals and the Industry, BITS Pilani has launched an online Post-Graduate Program in Big Data Engineering, in association with UpGrad. The program will train students in areas like Batch Processing, Real-Time Data Processing, and Big Data Analytics. Recent industry estimates expect Big Data & Analytics to grow at a 26% CAGR to $16 billion by 2025 – creating a need for almost a million data engineers. Prof. Sundar (Director – Off-Campus Programmes & Industry Engagement, BITS Pilani) says, “Big Data is increasingly finding adoption in all critical business applications. For this domain to realize its full potential, there is a need for high-quality technical talent in large numbers.” On the other hand, online education is widely gaining acceptance. “In the last couple of years, online as a platform has matured. It has the potential to provide a transformative learning experience to professionals in India, at a large-scale. Through this program with BITS Pilani, we hope to empower many individuals to meet their full professional potential,” added Ronnie Screwvala and Mayank Kumar, Co-founders of UpGrad. Speaking on the partnership with UpGrad, Prof. Gurunarayanan (Dean – Work Integrated Learning Programmes, BITS Pilani) mentioned, “BITS Pilani has a long history of providing quality technical education. The prospect of combining our subject matter expertise with UpGrad’s ability to deliver quality online learning experience to a large number of students is very exciting.” Explore Our Software Development Free Courses Fundamentals of Cloud Computing JavaScript Basics from the scratch Data Structures and Algorithms Blockchain Technology React for Beginners Core Java Basics Java Node.js for Beginners Advanced JavaScript If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore. Explore our Popular Software Engineering Courses Master of Science in Computer Science from LJMU & IIITB Caltech CTME Cybersecurity Certificate Program Full Stack Development Bootcamp PG Program in Blockchain Executive PG Program in Full Stack Development View All our Courses Below Software Engineering Courses Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career. In-Demand Software Development Skills JavaScript Courses Core Java Courses Data Structures Courses Node.js Courses SQL Courses Full stack development Courses NFT Courses DevOps Courses Big Data Courses React.js Courses Cyber Security Courses Cloud Computing Courses Database Design Courses Python Courses Cryptocurrency Courses Read our Popular Articles related to Software Development Why Learn to Code? How Learn to Code? How to Install Specific Version of NPM Package? Types of Inheritance in C++ What Should You Know?
Read More

by Omkar Pradhan

03 Aug'17
Big Data Roles and Salaries in the Finance Industry

5.7K+

Big Data Roles and Salaries in the Finance Industry

With the rapid advancement of Big Data, its power and influence are increasing very rapidly. Likewise, technologies, applications, and opinions based on Big Data are swiftly rising. Big Data may be the next big thing or utterly dead; a panacea or menace; the key to all future innovation or just a hollow branding term. Between these extremes, Big Data is an important area of focus for consumer finance. It has the potential to support and scale consumer financial health. Big Data’s Evolution in Consumer Finance Big data is a set of tools that can be used for creating, refining, and scaling financial solutions. It is sewn into the consumer financial services marketplace, in sophisticated ways. It is instructive to examine the greatest potential areas for the further development of big data. Also, the ways to foster its use in a safe, responsible, and beneficial manner on a large scale. Big data is now a fundamental element of risk-profiling for the banks. Analysts can study the impact of geopolitical escalations on different market segments. Now, banks can map out market-shaping events in the past to predict future patterns. Investment banks are using big data to analyse the effectiveness of their deals. They do this by studying the insights of trades they did or did not win on a client-by-client basis. The data systems at most banks are not like retail giants or startups or fin-tech companies. They were not constructed to analyse structured and unstructured data. Remodeling the entire IT and data systems needed a deep analysis of a bank’s data. Updating is very time-consuming and costly. Some banks have merged or acquired other banks or financial services businesses. These are facing even more complex issues while incorporating and updating IT systems. This is where big data can prove to be a game changer. Explore our Popular Software Engineering Courses Master of Science in Computer Science from LJMU & IIITB Caltech CTME Cybersecurity Certificate Program Full Stack Development Bootcamp PG Program in Blockchain Executive PG Program in Full Stack Development View All our Courses Below Software Engineering Courses Surge in hiring of big data analytics specialists The competition between banks and fund managers to hire big data specialists is heating up. Banks are actively recruiting to fill two main, but different roles: Big Data Engineers and Data Scientists/Analyst. Big Data Engineers are coming from a strong IT background. They have development or coding experience and are responsible for designing data platforms and applications. Data Scientists, in contrast, are bridging the gap between data analytics and business decision making. They’re capable of translating complex data into key strategic insight. Data scientists are also known as analytics and insights manager or director of data science. They should have sharp technical and quantitative skills. Explore Our Software Development Free Courses Fundamentals of Cloud Computing JavaScript Basics from the scratch Data Structures and Algorithms Blockchain Technology React for Beginners Core Java Basics Java Node.js for Beginners Advanced JavaScript Organisations working with Big Data, like Investment Banks usually follow this hierarchical structure: Junior Associate – A big data developer mainly working on Hadoop, Spark, Sqoop, Pig, Hive, HDFS, HBase. They’d have 5-6 years of industry experience in basic Java/Python/Scala programming. Salary Range: INR 12-18 Lakhs per annum Senior Associate – A big data senior developer working on Hadoop, Spark, Sqoop, Pig, Hive, HDFS, HBase. They’d have an industry experience of 7 to 10 years in advanced Java/Python/Scala programming. Salary Range: INR 18-25 Lakhs per annum Vice President – A big data architect with architecture experience in Hadoop, Spark, Hive, Pig, Sqoop, HDFS, HBase. They’d have expert programming knowledge in Java/Python/Scala with 10 to 15 years of experience. Salary Range: INR 25-50 Lakhs per annum The salaries of Big Data Engineers/Architects are 15-20% higher than other technologies in the current market scenario. Combining massive data sets thoughtfully can lead to greater accuracy and granularity. Financially underserved consumers often have unique combinations of needs. Thus, tools allowing scalable tailored services at low costs are vital to the mutual success of consumers and providers. However, the Big Data mosaic effect has also often raised concerns about its potential risk to consumer privacy, combining large data results in overly sensitive insights. From my experience, a career in Big Data is extremely rewarding in the present scenario, especially in the financial sector. Huge volumes of data are threatening technologies like data warehousing. I have shifted in my own career from being a data warehouse architect into big data and data science as that is the need of the hour. What do you think will be the impact of Big Data and other data technologies in the near future? Comment below and let us know. In-Demand Software Development Skills JavaScript Courses Core Java Courses Data Structures Courses Node.js Courses SQL Courses Full stack development Courses NFT Courses DevOps Courses Big Data Courses React.js Courses Cyber Security Courses Cloud Computing Courses Database Design Courses Python Courses Cryptocurrency Courses Conclusion If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore. Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career. Read our Popular Articles related to Software Development Why Learn to Code? How Learn to Code? How to Install Specific Version of NPM Package? Types of Inheritance in C++ What Should You Know?
Read More

by G Ram

13 Oct'17
Know all about the backbone of Aadhaar – Big Data!

7.72K+

Know all about the backbone of Aadhaar – Big Data!

Do you ever wonder how Aadhaar data belonging to more than 1.32 billion Indian citizens is stored? How the generation of one million Aadhaar numbers is achieved by performing 600 trillion matches in a day? Have you ever wondered how 100 million authentications are undertaken; establishing the identity of a person by UIDAI in a day? This article aims to provide answers to these questions. Along the way, this article will enumerate the requirement of Aadhaar and the two essential tasks of the UIDAI, i.e. enrollment and authentication. UIDAI has leveraged big data technologies like open scale-out, open-source, cheap commodity hardware, distributed computing technologies, etc. in handling and processing vast amounts of data. Aadhaar a necessity? The Indian Government was spending about 25 to 40 billion dollars on direct subsidies. According to CIA World Factbook, the GDP of North Korea was 40 billion for the year 2014. We are spending the equivalent of North Korea’s GDP on direct subsidies. The problem is not the subsidy, but the leakage of it. Most programs suffered due to ghost and multiple identities. Indians didn’t have any standard identity document. We possess many certificates viz., driving license, PAN card, voter card, etc. issued by central and state government authorities. All these certificates/cards were domain restricted. It was difficult to establish the identity of a person with these cards issued by the government. So, there was a need felt for a document which could uniquely determine the identity of a person. Thus, one of the most challenging projects ever took birth. The task of providing identification to one billion people, i.e. one-sixth of the world’s population. Explore our Popular Software Engineering Courses Master of Science in Computer Science from LJMU & IIITB Caltech CTME Cybersecurity Certificate Program Full Stack Development Bootcamp PG Program in Blockchain Executive PG Program in Full Stack Development View All our Courses Below Software Engineering Courses Big Data Roles and Salaries in the Finance Industry Tasks performed by UIDAI Two critical tasks performed by the UIDAI are enrollment and authentication. Enrollment is the process of providing a new Aadhaar number to a citizen. Authentication is the process of establishing the identity of a person. Both are entirely different beasts with their peculiar challenges. Enrollment is an asynchronous process. An Aadhaar number is not provided instantaneously. The Aadhaar number is generated after some days of data collection. Processing of every enrollment requires matching ten fingerprints, both irises, and demographics with every existing record in the database. Currently, UIDAI is processing one million Aadhaar numbers a day. With the Aadhaar database at 600 million, processing 1 million enrollments every day roughly translates to about 600 trillion matches every day. Explore Our Software Development Free Courses Fundamentals of Cloud Computing JavaScript Basics from the scratch Data Structures and Algorithms Blockchain Technology React for Beginners Core Java Basics Java Node.js for Beginners Advanced JavaScript The number game Do you know how many years do one trillion seconds make? More than 31,000 years. Can you imagine the height of a tower that would be created by stacking one trillion pennies on top of each other? It will be more than 8,70,000 miles. One trillion ants will weigh more than 3000 tons. Six hundred trillion is a one followed by fourteen zeros. Besides storing such humongous amount of data, processing 600 trillion biometric matches in a day is beyond anyone’s wildest dreams. On the other hand, imagine if a person wants to open a bank account. He approaches a bank employee. This employee wants to check if this person is who he is claiming to be before opening his bank account. This authenticity check can’t run forever; then no customer will be willing to open an account with that bank. Authentication is expected to be performed within quick seconds, even when the authentication volume is a few 100 million requests every day. Authentication is synchronous and needs to happen very fast. In-Demand Software Development Skills JavaScript Courses Core Java Courses Data Structures Courses Node.js Courses SQL Courses Full stack development Courses NFT Courses DevOps Courses Big Data Courses React.js Courses Cyber Security Courses Cloud Computing Courses Database Design Courses Python Courses Cryptocurrency Courses What’s the Difference between Data Science, Machine Learning and Big Data? Now let us see how the architectural principles established with UIDAI help in achieving the tasks of enrollment and authentication efficiently and effortlessly. Architectural Principles Scale-Up Up until the 90s Information Technology systems used to be monolithic, involving both technology and vendor lock-in. Once investment was made, it was challenging to break away from a particular vendor and technology. Advantage can’t be taken of the advancement in technology or drop in hardware and other costs. The only option was to ‘Scale-Up’ with the same vendor and technology. Scale-Out From the 90s to mid-2000s, the software with horizontal scaling capability at the application server layer came into existence. Even though it was possible to scale horizontally, it was tied up to a particular database vendor or application vendor. Here, there was no technology, but vendor lock-in. Here typically the computing environment, i.e. the hardware and OS used was similar across all application server nodes. A Love Story Begins with Open Scale-Out Open Scale-Out This phase started from mid-2000 onwards. Here the system architecture is vendor and technology neutral. There is no lock-in with any technology or vendor. Infinite scope for scaling and interoperability exists. UIDAI achieved open scale-out with the help of cheap commodity hardware. Commodity Hardware Commodity hardware is nothing but that which is affordable and accessible. It has nothing special in it which is typically used by enterprise systems. The entire UIDAI hardware infrastructure is composed of cheap Linux based personal computers and blade servers. The advantage of commodity hardware is that the cost and the initial investment are meager. The architecture is scalable when the requirement exists. Equipment can be purchased from any vendor and plugged in for scaling the architecture. The advantage of a price drop in the future can also be used while scaling the infrastructure. The open source technology, which is used to cluster commodity hardware is known as Hadoop. Distributed Computing & Open Source Imagine how it would be if a monolithic structure did all the processing work required for generating an Aadhaar card. How significant would that structure be? How many processing cores are needed for 600 trillion matches a day? Is it possible to expand that structure if the number of matches required increases from 600 to 1200 trillion? How costly would that be? For all these reasons, Aadhaar was implemented in a distributed commodity hardware. It is distributed not monolithic. The processing happens on many nodes at once, which reduces the execution times by many times. Distributed computing reduces the computation time, many times, which would take days in a traditional monolithic structure. The file system used in conventional sequential computing would not work in case of distributed computing. Read our Popular Articles related to Software Development Why Learn to Code? How Learn to Code? How to Install Specific Version of NPM Package? Types of Inheritance in C++ What Should You Know? A distributed platform requires a specially designed file system. Hadoop distributed file system (HDFS) is one such type of distributed file system. Special software is also needed to spread the workload between different nodes. On completion of processing at various nodes, this software should also aggregate the results. MapReduce is one such open source software which distributes and finally aggregates the processed results. Hive is a tool used to query the database distributed on the commodity hardware. Hive is very similar to SQL. What Skill Development Really Means and Why It’s Important for Success All these open source technologies like Hadoop, HDFS, MapReduce and Hive etc. come under the purview of Big data technologies. It is because of these technologies the processing time of computation, which would otherwise take days, can be reduced to mere minutes and at a very cheap cost. UIDAI entirely leveraged these technologies. It was implemented in a completely open scaleout fashion without any dependence on vendor or technology. Kudos Team UIDAI! Petabytes of data related to the identity of the citizens of a country, with a population more than one billion, is processed using open source technologies in a distributed fashion on commodity hardware. This is an astonishing feat of engineering which was successfully achieved by UIDAI. Team UIDAI deserves a thunderous applause for attaining this impossible feat. The government should now think of creative ways to leverage this data in avoiding leaks that happen in its various direct subsidy programs. It should bring more transparency to financial transactions, prevent tax evasion, provide banking facilities to the poor, and other such crucial tasks. Then, we can achieve the status of a real ‘welfare nation’. Wrapping up If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore. Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Read More
Planning a Big Data Career? Know All Skills, Roles & Transition Tactics!

5.89K+

Planning a Big Data Career? Know All Skills, Roles & Transition Tactics!

Do you know the skills and steps required to successfully transition to a Big Data career? If you’re someone who doesn’t belong to the Big Data Industry yet but has a background which may have links to it – you may be thinking about a lucrative and long-term Big Data career. If you’re aspiring to be a Big Data Engineer or a Team Lead/Tech Lead or even a Project Manager/Architect, there are some key technical skills required by employers in the Big Data Ecosystem. These skills vary for different Big Data Roles. In this article, we will discuss the technical skills required by employers for different Big Data profiles. We’ll also discuss organisational expectations from different hierarchical levels and steps to make a successful Big Data career transition. Essential Skills Here are the essential skills needed for making a successful Big Data career transition: Distributed Computing Big Data Environments You should have hands-on skills in at least one of the many Hadoop Distributions (viz. Hortonworks, Cloudera, MapR, IBM Infosphere BigInsights). At this point in time, Cloudera distribution is the most deployed distribution. Cloud Data Warehouses Since there is an increased affinity towards moving from on-premise data warehousing solutions to cloud-based data warehousing solutions, you should have skills in technologies like Amazon Redshift or Snowflake. Redshift is a fully managed cloud-based petabyte-scale data warehousing solution. NoSQL & NewSQL You should have skills in some of the new emerging NoSQL technologies. For e.g. MongoDB (which is a document database) or Couchbase (which is a key-value store). Others like Cassandra and HBase are also popular. On the cloud, Amazon has specific databases like DynamoDB and SimpleDB (both key-value pair stores). Data Integration & Visualisation As you work on large-scale analytics projects, you will be ingesting data from multiple sources. Keeping this in mind, you should have knowledge of Big Data compliant integration technologies like Flume, Sqoop, Storm Kafka etc. Data Integration products like Informatica and Talend have also upgraded their capabilities to Big Data processing. In the world of visualisation, Tableau and QlikView are popular. They also integrate with other BI (business intelligence) reporting data stores. Business Intelligence (BI) Hands-on knowledge of Business Intelligence technologies is also helpful. There are several technologies available in BI. For e.g. IBM, Oracle and SAP have acquired BI suites. Microsoft’s BI stack is largely organically developed. Others like Microstrategy and SAS are also independent BI providers. Big Data Testing Big Data Testing is fundamentally different from traditional ETL and application testing because of the volume of data involved. The differences in test scenarios occur due to the velocity and variety of data. Also, in certain cases, execution of test cases requires scripting and programming skills (Pig scripts, Hive query language etc.). Organisational Expectations and Hierarchical Responsibilities An organisation has different expectations from different levels of the workforce: Young Professionals (less than 5 years of overall experience) People in this age group mostly work as Big Data Engineers. As a Big Data Engineer, you are expected to be conversant with the above-mentioned technologies in the form of hands-on skills. As engineers, you would be responsible for building, testing and deploying the Big Data solutions. Explore Our Software Development Free Courses Fundamentals of Cloud Computing JavaScript Basics from the scratch Data Structures and Algorithms Blockchain Technology React for Beginners Core Java Basics Java Node.js for Beginners Advanced JavaScript Mid-Career Professionals (5 to 10 years overall experience)  People in this age group work as a team or tech leads. As a leader too, you are expected to be conversant in the above-mentioned technologies but will also be responsible for taking design decisions, conducting regular checkpoint reviews of the deliverables and providing overall technical guidance to the developers. Senior Professionals (overall experience of more than 10 years) Enterprise Architects: Enterprise architects are expected to be familiar with the above-mentioned technologies along with having a holistic view of the Big Data Landscape. As an architect, you are expected to be trusted partners of the clients, advising them on the right architecture, transformation strategy and roadmap, tool selection and vendor evaluation. Project Managers: For a PM, managing a Big Data project team requires cross-functional team management skills – data warehousing teams, Business Intelligence teams, statisticians, domain experts and data teams. Knowledge management is another key skill. It is important to understand and plug knowledge gaps in the team. Further, a Big Data PM is expected to understand Agile methodologies to deliver the projects. What’s the Difference between Data Science, Machine Learning and Big Data? Explore our Popular Software Engineering Courses Master of Science in Computer Science from LJMU & IIITB Caltech CTME Cybersecurity Certificate Program Full Stack Development Bootcamp PG Program in Blockchain Executive PG Program in Full Stack Development View All our Courses Below Software Engineering Courses Transitioning to Big Data The best way to make a Big Data career transition is by acquiring the relevant skills and then applying them in case studies/projects that simulate real-life scenarios. These could be part of a training program/education program, or through shadowing in-flight projects (or Proof of Concepts – PoCs) in existing organisations, wherever possible. The following is a breakdown of the kind of activities practitioners can do in these case studies, according to the experience levels. Young Professional (less than 5 years of overall experience) You should be looking to acquire the skills through training programs/PoCs and then apply them to projects that simulate real-life scenarios. Mid Career Professional (5 to 10 years overall experience) You should drive technology solution discussions, coming up with designs and conducting reviews of work products and guiding teams during the case studies. upGrad’s Exclusive Software Development Webinar for you – SAAS Business – What is So Different? document.createElement('video'); https://cdn.upgrad.com/blog/mausmi-ambastha.mp4   Senior Professionals (overall experience of more than 10 years) You should be the one who kick-starts the execution of the case studies, acquiring a clear understanding of functional requirements, developing the solution strategy to meet project requirements within stipulated timelines and developing the project charter (PM roles) and overall technology solution (Architect roles). This takes us to the question: In-Demand Software Development Skills JavaScript Courses Core Java Courses Data Structures Courses Node.js Courses SQL Courses Full stack development Courses NFT Courses DevOps Courses Big Data Courses React.js Courses Cyber Security Courses Cloud Computing Courses Database Design Courses Python Courses Cryptocurrency Courses What should you look for in a good Big Data Program or Course? The course should provide the right enablers for the participants to complete a Big Data career transition into these roles. The following are the 3 key expectations you should have of any course: Technical skills: The course should impart the above-mentioned skills through a suitably designed curriculum. Cloud platform: You should get access to a cloud platform with the relevant software and experiment with it. Case studies/Projects: The course should have a simulation of real-life scenarios as explained above, where participants in the various categories can play out the roles as explained above. Read our Popular Articles related to Software Development Why Learn to Code? How Learn to Code? How to Install Specific Version of NPM Package? Types of Inheritance in C++ What Should You Know? If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore. Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Read More

by Sourabh Mukherjee

17 Nov'17
Big Data Applications That Surround You

5.41K+

Big Data Applications That Surround You

The consumer market today is becoming more and more competitive and companies are struggling to offer something unique to their consumers. To be able to do that, companies need to understand the consumers better. The primary way to get meaningful consumer insights is to analyse the existing data collected from users. These insights can then be used not only to continue selling the products but provide customised events and service, which are available at a premium. This trend is fairly common in new age industries such as e-commerce, even traditional, centuries-old industries greatly benefit from big data and analytics applications. For example, by installing sensors and subsequently analysing them, a railway operator can analyse their fixed and rolling assets. Big data analytics can identify when to carry out preventive maintenance on assets such as bridges and railway lines, increasing economic life and reducing downtime. Hence, data is not just benefitting new-age industries, but the traditional industries as well. Here are some of the most commonly used big data applications around you, across industries: Retail Companies collect data of individual customers, the type of purchases they’re making and more importantly where they’re making the purchases. Based on this information, companies are able to segment customers according to their buying behavior. They then make predictions on what they will be buying in the future. This data is also used to cross-sell or upsell items, with the help of attractive offers on these new items. Location Another big use of data in analytics is to map areas or locations, as well known by everyone who uses Uber or Ola or Google Maps. Even food delivery apps and other apps that deliver goods to your doorsteps know where you live/work, etc. A huge amount of data gets captured every time you order and it includes all location characteristics in it. This information is also mined from a public policy perspective to look for traffic jams and also for taking decisions like setting up public transportation facilities such as metro stations. Explore our Popular Software Engineering Courses Master of Science in Computer Science from LJMU & IIITB Caltech CTME Cybersecurity Certificate Program Full Stack Development Bootcamp PG Program in Blockchain Executive PG Program in Full Stack Development View All our Courses Below Software Engineering Courses Energy The advent of big data has had a huge impact on the energy sector. Big data involves a large number of sensors and data collection methodologies which have allowed for the setting up of large systems for preventive maintenance. It enables better forecasting of demand. For example, ten years ago, there were no smart meters. Now, the power utility sector has very good information on how their consumers are consuming their power, the time, and the load that is consumed. This is actually helping them to make their investment decisions much faster. These industries are becoming more efficient both in terms of cost and in operation. Telecom Every operator is searching for new ways to increase profits during a time of stagnant and competitive growth in the industry. Here is where telecom companies are advancing rapidly in terms of being able to capture data and use it wisely for a variety of uses. Companies around the world are using big data to gain market share with targeted promotions, combating fraud, improving customer experiences and designing newer product offerings. Explore Our Software Development Free Courses Fundamentals of Cloud Computing JavaScript Basics from the scratch Data Structures and Algorithms Blockchain Technology React for Beginners Core Java Basics Java Node.js for Beginners Advanced JavaScript Automotive This sector is actually now trying to become more connected. Self-driving cars that we all already know about is one of the biggest buzzwords. Underneath it, to make this possible, there is a huge amount of technology that vehicles are collecting, gathering and using in conjunction to come up with these advancements. Increased government encouragement of electric vehicles requires location analytics to establish charging stations. In-Demand Software Development Skills JavaScript Courses Core Java Courses Data Structures Courses Node.js Courses SQL Courses Full stack development Courses NFT Courses DevOps Courses Big Data Courses React.js Courses Cyber Security Courses Cloud Computing Courses Database Design Courses Python Courses Cryptocurrency Courses What lies ahead? The only thing that is going to hold back the Big Data industry is the number of people who are skilled in it. The big data applications are actually limitless. There is a huge demand for skilled people at all levels from project managers to raw beginners. As a practitioner who’s been in this industry for some time, I can tell you that there is a huge demand. Companies are facing a talent problem at all levels and the solutions also have to come from different sources, such as increased access to education, training initiatives by companies, awareness spreading by the government. The 11-month BITS Pilani and UpGrad program for working professionals is exactly the type of program that we need to help people who are ambitious, keen on furthering their careers and following their passions. I think a course like this is very useful because you have a large number of people who come from the industry and are excited to teach. Students will benefit a lot from learning hands-on and through practitioners directly. I am fairly certain that it will involve a lot of problem-solving and casework type methodology. So, I think people are going to have fun while they’re at it. I think that’s especially important when you are doing something on your weeknights and weekends. Read our Popular Articles related to Software Development Why Learn to Code? How Learn to Code? How to Install Specific Version of NPM Package? Types of Inheritance in C++ What Should You Know? Views shared in this blog are the author’s personal views and they do not reflect the official stance of The Boston Consulting Group (BCG) or any of the author’s clients. Conclusion If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore. Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Read More

by Sanjay Sinha

22 Dec'17
How Big Data and Machine Learning are Uniting Against Cancer

5.81K+

How Big Data and Machine Learning are Uniting Against Cancer

Cancer is not one disease. It is many diseases. Let us understand the cause of cancer by a simple example. If you take a photocopy of a document, due to some issues, other dots or smears appear on it even though they are not present in the original copy. In the same way, in gene replication processes, errors occur inadvertently. Most of the time the genes with errors will not be able to sustain and will ultimately perish. In some rare cases, the mutated gene with mistakes will survive and get further replicated uncontrollably. Uncontrollable replication of mutated genes is the primary cause of cancer. This mutation can happen in any of the twenty thousand genes in our body. Variation in any one or a combination of genes makes cancer a severe disease to conquer. To eradicate cancer, we need methods to destroy the rogue cells without harming the functional cells of the body; which makes it doubly hard to defeat. Cancer and its complexity Cancer is a disease with a long tail distribution. Long tail distribution means there are various reasons for this condition to occur and there is no single solution for eradicating it. There are diseases which affect a large percentage of the population but have a sole cause of occurrence. For example, let us consider Cholera. Eating food or drinking water contaminated by the bacterium Vibrio Cholerae is the cause of cholera. Cholera can occur only because of Vibrio Cholerae, and there is no another reason. Once we find out the only cause of a disease, then it is relatively easy to conquer it. What if a condition occurs because of multiple reasons? A mutation can occur in any of the twenty thousand genes in our body. Not only that, but we also need to consider their combinations. Cancer may not just happen because of a random mutation in a gene but also because of a combination of gene mutations. The number of causes for cancer becomes exponential, and there is no single mechanism to cure it. For example, a mutation of any of these genes ALK, BRAF, DDR2, EGFR, ERBB2, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, and RIT1 can cause lung cancer. There are many ways for cancer to occur and that’s why it is a disease with long tail distribution. In our arsenal for waging this war on cancer and conquering it, big data and machine learning are critical tools. How can big data help in fighting this war? What does machine learning have to do with cancer? How are they going to help in fighting a disease with many causes, a condition with a long tail distribution? Firstly, how and where is this big data generated? Let us find answers to these questions. Gene Sequencing and explosion in data Gene sequencing is one area which is producing humongous amounts of data. Exactly how much data? According to the Washington Post, the human data generated through gene sequencing (approximately 2.5 lakh sequences) takes up about a fourth of the size of YouTube’s yearly data production. If all this data were combined with all the extra information that comes with sequencing genomes and recorded on 4GB DVDs, it would be a stack about half a mile high. Explore Our Software Development Free Courses Fundamentals of Cloud Computing JavaScript Basics from the scratch Data Structures and Algorithms Blockchain Technology React for Beginners Core Java Basics Java Node.js for Beginners Advanced JavaScript The methods for gene sequencing have improved over the years, and the cost for the same has plummeted exponentially. In the year 2008, the cost of gene sequencing was 10 million dollars. As of today, it is only a 1000 dollars. In the future, it is expected to reduce further. It is estimated that one billion people will have their genes sequenced by 2025. So, within the next decade, the genomics data generated will be somewhere between 2 – 40 exabytes in a year. An exabyte is ten followed by 17 zeros. Before coming to how data will help in curing cancer, let us take one concrete example and see how data can help in conquering a disease. Data and its analysis helped in finding out the cause of one infectious disease and fight it, not now but in nineteenth-century itself! Yes, in the nineteenth century! The name of that disease is Cholera. Clustering in the Nineteenth Century – the Cholera breakthrough John Snow was an anesthesiologist and cholera broke out in September 1854 near Snow’s house. To know the reason for cholera, Snow decided to note the spatial dimensions of the patients on the city map. He marked the location of the home address of patients on London’s city map. With this exercise, John Snow understood that people suffering from cholera were clustered around some specific water wells. He firmly believed that a contaminated pump was responsible for the epidemic and against the will of the local authorities replaced the pump. This replacement drastically reduced the spread of cholera. Snow subsequently published a map of the outbreak to support his theory, showing the locations of the 13 public wells in the area, and the 578 cholera deaths mapped by home address. This map ultimately led to the understanding that cholera was an infectious disease and quickly spread through the medium of water. John Snow’s experiment is the earliest example of applying the clustering algorithm to know the cause of illness and help eradicate it. In the nineteenth century, John Snow could apply clustering algorithm on a London city map with a pencil. With cancer as the target disease, this level of analysis is not possible with the same ease as John Snow’s Analysis. We need sophisticated tools and technologies to mine this data. That is where we leverage the capabilities of modern technologies like Machine Learning and Big Data. Explore our Popular Software Engineering Courses Master of Science in Computer Science from LJMU & IIITB Caltech CTME Cybersecurity Certificate Program Full Stack Development Bootcamp PG Program in Blockchain Executive PG Program in Full Stack Development View All our Courses Below Software Engineering Courses Big data and Machine learning – tools to fight cancer Vast amounts of data along with machine learning algorithms will help us in our fight with cancer in many ways. It can help us with diagnosis, treatment, and prognosis. Mainly, it will help customise the therapy according to the patient, which is not possible otherwise. It will also help deal with the long tail of the distribution. Given the enormous amounts of Electronic Medical Records (EMR), data generated and recorded by various hospitals; it is possible to use ‘labelled’ data in diagnosing cancer. Techniques like Natural Language Programming (NLP) are utilised for making sense of doctor’s prescriptions and Deep Learning Neural Networks are deployed to analyse CT and MRI scans. The different types of machine learning algorithms search the EMR databases and find hidden patterns. These hidden patterns will help in diagnosing cancers. A college student was able to design an Artificial Neural Network from the comfort of her home and developed a model that can diagnose breast cancer with a high degree of accuracy. In-Demand Software Development Skills JavaScript Courses Core Java Courses Data Structures Courses Node.js Courses SQL Courses Full stack development Courses NFT Courses DevOps Courses Big Data Courses React.js Courses Cyber Security Courses Cloud Computing Courses Database Design Courses Python Courses Cryptocurrency Courses Diagnosis with Big Data and Machine Learning Brittanny Wenger was 16 years old when her older cousin was diagnosed with breast cancer. This inspired her to make the process better by improving the diagnostics. Fine Needle Aspiration (FNA) was a less invasive method of biopsy and the quickest method of diagnosis. The doctors were reluctant to use FNA because the results are not reliable. Brittanny thought of using her programming skills to do something about it. She decided to improve the reliability of FNA which would enable the women to choose less invasive and comfortable diagnostic methods. Brittanny found public domain data from the University of Wisconsin that included Fine Needle Aspiration. She coded an Artificial Neural Network (ANN) which is inspired by the design of human brain architecture. She used cloud technologies to process the data and train the ANN to find the similarities. After many attempts and errors finally, her network was able to detect breast cancer from an FNA test data with 99.1% sensitivity to malignancy. This method is applicable for diagnosing other cancers as well. The accuracy of diagnosis is dependent upon the amount and quality of the data available. The more the data available, the more the algorithms will be able to query the database, find similarities and come out with valuable models. Treatment with Big Data and Machine Learning Big data and Machine learning will be helpful not only for diagnosis but treatment as well. John and Kathy were married for three decades. At the age of 49, Kathy was diagnosed with stage III breast cancer. John, CIO of a Boston hospital helped plan her treatment with the help of big data tools that he designed and brought into existence. In 2008, five Harvard affiliated hospitals shared their databases and created a powerful search tool known as ‘Shared Health Research Information Network’ (SHRINE). By the time of Kathy’s diagnosis, her doctors could sift through a database of 6.1 million records to find insightful information. Doctors queried ‘SHRINE’ with questions like “50-year-old Asian women, diagnosed with stage III breast cancer and their treatments”. Armed with this information doctors were able to treat her with chemotherapy drugs by targeting the estrogen-sensitive tumour cells by avoiding surgery. By the time Kathy completed her chemotherapy regimen the radiologists could no longer find any tumour cells. This is one example of how big data tools can help in customising the treatment plan according to the requirement of each. As cancer is a long tail distribution a ‘one size fits all’ philosophy will not work. For customising treatments depending on the patient’s history, their gene sequence, results of diagnostic tests, a mutation found in their genes or a combination of their genes and environment, big data and machine learning tools are indispensable. upGrad’s Exclusive Software Development Webinar for you – SAAS Business – What is So Different? document.createElement('video'); https://cdn.upgrad.com/blog/mausmi-ambastha.mp4   Drug Discovery with Big Data and Machine Learning Big data and Machine learning will not only help in diagnosis and treatment but also will revolutionise drug discovery. Researchers can use open data and computational resources to discover new uses for the drugs which are already approved by agencies like FDA for other purposes. For example, scientists at University of California at San Francisco found by number crunching that a drug called ‘pyrvinium pamoate’ which is used to treat pinworms – could shrink hepatocellular carcinoma, a type of liver cancer, in mice. This disease which is associated with the liver is the second highest contributor to cancer deaths in the world. Not only is big data used for discovering new uses for old drugs but can also be used for detecting new drugs. By crunching data related to different drugs, chemicals, and their properties, symptoms of various diseases, the chemical composition of the drugs used for those conditions and side effects of these medications collected from different media; new drugs can be devised for various types of cancer. This will significantly reduce the time taken to come up with new medicines without wasting millions of dollars in the process. Using big data and machine learning will no doubt improve the process of diagnosis, treatment and drug discovery in treating cancer, but it is not without challenges. There are many stumbling blocks and problems on the road ahead. If these blocks are not removed, and these challenges are not faced, then our enemy will get the upper hand and will defeat us in the future battle. Read our Popular Articles related to Software Development Why Learn to Code? How Learn to Code? How to Install Specific Version of NPM Package? Types of Inheritance in C++ What Should You Know? Challenges in using Big Data and Machine Learning to fight Cancer Digitisation Except for a few large and technically advanced hospitals, most of them are yet to be digitised. They are still following the old methods of capturing and recording data in massive stacks of files. Due to lack of technical expertise, affordability, economies of scale and various other reasons, digitisation has not taken place. Provision of open source EMR software, teaching how helpful these digital records could be in treating the patients and how profitable it is to the hospitals are some steps in the right direction. Data locked in enterprise warehouses As of today, only a few hospitals can digitally capture patient records. This apparatus too is locked away in enterprise warehouses and inaccessible to the world at large. Hospitals are reluctant to share their databases with other hospitals. Even if they are willing, they are plagued by the different database schemas and architectures. Critical thinking is required on this front about how hospitals can share their databases among themselves for their mutual benefit without being suspicious of each other. A consensus needs to be reached about the schema in which this data should be shared as well, for the benefit of all hospitals. This patient data should be democratised and utilised for the betterment of the future of mankind.   Patient data should not be allowed to be employed for the growth of a single organisation. Utmost care should be taken to anonymise the individual to whom the data belongs. If a person’s lipstick preference is leaked, then there is not much harm. If a person’s medical history is leaked, then it will have a significant impact on his life and prospects. The government should take positive steps in this direction and should help create a big data infrastructure for storing medical records of patients from all hospitals. It should make it compulsory for all hospitals to share their database within this shared infrastructure. Access to this database should be made free for patient treatment and research. Improvement in efficiency of Machine Learning Algorithms Machine learning is not a magic pill for cancer diagnosis and treatments. It is a tool that if used well can help in our journey to conquer cancer. Machine learning is still in a nascent stage and has its disadvantages. For example, the data on which these algorithms are trained needs to be very close to the data on which they are utilised for producing results. If there is a huge difference in them, then the algorithm will not be able to provide meaningful results which can be employed. There are many machine learning algorithms which exist with their own peculiar assumptions, advantages, and disadvantages. If we can find a way to combine all these different algorithms for achieving the results required by us, i.e. curing cancer, needless to say, we would have found a hugely beneficial outcome. The famous machine learning scientist Pedro Domingos calls it “The Master Algorithm”, who also wrote a popular science book of the same name. According to Pedro, there are five different schools of thought in machine learning. The symbolist, connectionist, Bayesian, evolutionaries and analogisers. It is difficult to go into all these different types of machine learning systems in this article. I will cover all the five types of machine learning systems in one of my future blogs. For now, we need to understand that all these different methods have advantages and disadvantages of their own. If we can combine them, then we can derive highly impactful insights from our data. This will be immensely useful not only for all kinds of predictions and forecasts but also for our fight against a vengeful enemy – cancer. To summarise, cancer is a formidable enemy which keeps changing its form frequently. We do possess new weapons in our arsenal now in the form of big data and machine learning, however, to face it competently. But to demolish it entirely we need a more powerful weapon than what we presently possess. The name of that weapon is ‘The Master Algorithm’. We also need to make some changes in the strategies and methods with which we are fighting this enemy. These changes are creating a big data infrastructure, making it compulsory for hospitals to share anonymised patient records, maintaining the security of the database and allowing free access to the database for patient treatment and research to cure cancer. Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career. Wrapping up If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore. Learn Software Engineering degrees online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Read More
Piyush Kumar of MakeMyTrip explains Big Data Operations

6.08K+

Piyush Kumar of MakeMyTrip explains Big Data Operations

Piyush Kumar is the Head of Data Platform Engineering at MakeMyTrip. He heads the Data team (Data platform, Data Science, and Business Intelligence functions) at MakeMyTrip to support various Lines of Business such as Flights, Hotels, Holidays, and Ground. Along with defining Big Data strategy, he looks after designing and building a scalable and distributed machine learning platform for Big Data systems with real-time streaming and batch processing for Clickstream, Mobile, Transactional, CRM (Customer relationship management) & user feedback or reviews data. In an exclusive interview, Piyush provides valuable insights to UpGrad about how MakeMyTrip has leveraged Big Data, in line with current trends, to upgrade and enhance its product offerings. In this first video, Piyush talks about how MakeMyTrip uses Big Data to solve critical business problems in the area of customer segmentation, personalisation, building data pipelines, etc. He also explains the architecture of the Big Data system at MakeMyTrip. In the second video, Piyush shares insights on career planning for Big Data enthusiasts highlighting different career paths available in Big Data and the necessary skill sets required. So, Piyush spoke about how MakeMyTrip uses Big Data in their operations. He provided valuable insights to UpGrad about how MakeMyTrip is leveraging Big Data, in line with current trends, to upgrade and enhance its product offerings. He shared insights on career planning for big data enthusiasts highlighting the necessary skill sets required. Explore Our Software Development Free Courses Fundamentals of Cloud Computing JavaScript Basics from the scratch Data Structures and Algorithms Blockchain Technology React for Beginners Core Java Basics Java Node.js for Beginners Advanced JavaScript Are you planning a big data career? If you want us to cover other topics and interview other industry experts please let us know your thoughts in the comments section. Explore our Popular Software Engineering Courses Master of Science in Computer Science from LJMU & IIITB Caltech CTME Cybersecurity Certificate Program Full Stack Development Bootcamp PG Program in Blockchain Executive PG Program in Full Stack Development View All our Courses Below Software Engineering Courses If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore. In-Demand Software Development Skills JavaScript Courses Core Java Courses Data Structures Courses Node.js Courses SQL Courses Full stack development Courses NFT Courses DevOps Courses Big Data Courses React.js Courses Cyber Security Courses Cloud Computing Courses Database Design Courses Python Courses Cryptocurrency Courses Learn Software Engineering degrees online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career. Read our Popular Articles related to Software Development Why Learn to Code? How Learn to Code? How to Install Specific Version of NPM Package? Types of Inheritance in C++ What Should You Know?
Read More

by Mohit Soni

17 Jan'18
The Business of Data Security is Booming!

5.25K+

The Business of Data Security is Booming!

This is an excerpt from the book ‘Breach: Remarkable Stories of Espionage and Data Theft and the Fight to Keep Secrets Safe’ by Nirmal John. Nirmal John has worked in advertising and journalism. He was earlier the assistant editor of Fortune. This book brings to light several incidents which till now were brushed under the carpet. It has instances of piracy, data theft, phishing, among many others. Even though he focuses on India, Nirmal John takes great pains to show links between underground international networks working to undermine data security. This excerpt has been taken from the chapter, ‘WHITE HAT Is GrEEnBACK’. This excerpt throws light on the normal routine of Saket Modi, a young CEO of a data security company, Lucideus. Fear. Urgency. Desperation. Panic. The themes that dominate that call for help are almost always the same. Pretty much everyone working in the cybersecurity business knows what it is to get that call, especially in the middle of the night. There used to be a time when break-ins were reported first to the police. But with the crime itself changing in nature, the way it is reported is changing too. The cops aren’t in control when it comes to new-age crime and theft of data. Dialling 100 may not get you far when it comes to data breaches. Saket Modi has been receiving these calls for a few years now. Modi is a baby-faced young man in his twenties who boasts an easy charm. His company is named Lucideus. It is a mash-up of two names from the ancient scriptures— Lucifer, the Latin word which came to be used to describe the devil, and Zeus, the supreme Greek deity who, among other things, dispensed justice. The mash-up is meant to be a reference to how the ‘bad’ and the ‘good’ come together online. Modi’s earlier office in Safdarjung Development Area market near IIT in Delhi was small and tastefully appointed in white (perhaps to accentuate the idea of the white hat hacker). He has since moved to a new, much larger space in Okhla, still tastefully appointed, still in white. He started out when he was in his teens, helping companies investigate breaches and shore up their cybersecurity. His carefully constructed reputation as a young white hat hacker brought him many projects over the years. These days he is among those advising the Government of India on matters of cybersecurity. Most of his projects for companies started with a call from a panic-laden voice. Modi particularly remembers one call from nearly five years back. It was the chief executive of one of India’s largest services companies at the other end of the line. The CEO introduced himself. He had met Modi on the sidelines of a conference; they’d exchanged visiting cards, and the chief executive had fished out Modi’s card to call him. ‘We think we are in major trouble. How quickly can you fly to Bengaluru?’ Modi was used to such requests from panic-stricken executives. He asked for a bit more context on what exactly had gone wrong. ‘The CEO of one of my top five clients, who is a huge name internationally, called me earlier today. He asked me to immediately stop all the operations I was doing for his company. He didn’t explain why. He just said that he will be calling me later to explain further.’ This was a client that contributed a very significant chunk to the Indian company’s top line. There were hundreds of employees from the Indian company working on the client’s projects. ‘I suspect there has been a breach, because of which all this could be happening. There are a few other things that would explain this reaction from the client. The truth is, I can’t afford to lose this client under any circumstances,’ the executive confessed. Explore Our Software Development Free Courses Fundamentals of Cloud Computing JavaScript Basics from the scratch Data Structures and Algorithms Blockchain Technology React for Beginners Core Java Basics Java Node.js for Beginners Advanced JavaScript Saket Modi took the next flight to Bengaluru. It was when he reached the office of the chief executive that Modi realized he wasn’t the only one who had got a call from him. There, sitting in the conference room and waiting to be briefed, were cyber-forensics experts from big accounting firms and other security researchers like himself. ” upGrad’s Exclusive Software Development Webinar for you – SAAS Business – What is So Different? document.createElement('video'); https://cdn.upgrad.com/blog/mausmi-ambastha.mp4 ”   Even though this was par for the course when it came to how Indian companies reacted in such situations, Modi says he was taken aback. He says this has become a common practice when it comes to investigating breaches—the targeted company invites the names known to have cyber- forensics experience for a briefing post an incident and then gives the job to whoever bids the lowest. The question he asks is whether matters of security can be treated like other supplier relationships, especially in a crisis situation? This is probably how things work in many Indian corporations but, as he points out with evident displeasure, that is not how security and breach protocol should roll, particularly in a crisis situation. ‘security is not an L1 business.’ The chief executive briefed the gathering about the situation. There had indeed been a breach. He was looking for partners who could immediately deploy resources to find the vulnerabilities that had led to the breach and could help plug them. That was the only way he could convince the client not to terminate the contract. Modi ended up with the project even though his quoted fee was high. He flew in his team from New Delhi and, during the investigation, found several vulnerabilities in the organization that had resulted in the breach. In-Demand Software Development Skills JavaScript Courses Core Java Courses Data Structures Courses Node.js Courses SQL Courses Full stack development Courses NFT Courses DevOps Courses Big Data Courses React.js Courses Cyber Security Courses Cloud Computing Courses Database Design Courses Python Courses Cryptocurrency Courses The team started by pouring over the access logs which list the requests for individual files from a website. They then isolated the sectors which were compromised and sandboxed them. That meant that they used a separate machine, not connected to the company’s main network, to run programmes and test the behaviour of the malicious code. The idea behind doing this was to deduce if there were patterns in the type of data that was being compromised. If they could unearth a pattern, it could theoretically lead them to the hacker. Unfortunately, as in many such instances, Modi says, he couldn’t identify the source of the breach as its origins were from beyond Indian borders and hidden in a complex trail of IPs. His team couldn’t definitively pinpoint the location, but they pushed the chief executive and his company to shore up every single facet of its security protocol. Explore our Popular Software Engineering Courses Master of Science in Computer Science from LJMU & IIITB Caltech CTME Cybersecurity Certificate Program Full Stack Development Bootcamp PG Program in Blockchain Executive PG Program in Full Stack Development View All our Courses Below Software Engineering Courses The client continued the shutdown of the handling of his operations by the Indian company for a month, while Modi and his team worked on overhauling the Indian company’s security system. A month later, Modi had a call with the CEO of the company’s international client to detail the steps they had taken to make sure that breaches such as the one that had happened would not recur. Later, the client sent a team to audit the changes, and only when it was satisfied did the client allow the company to resume work on its projects. It cost the Indian company thousands of billable hours, not to mention damage to their standing in front of the client. If you like this excerpt and want to read real-life thriller stories full of hackers, police, and corporates, you can read the book; ‘Breach’ by Nirmal John. Read our Popular Articles related to Software Development Why Learn to Code? How Learn to Code? How to Install Specific Version of NPM Package? Types of Inheritance in C++ What Should You Know? Conclusion If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore. Learn Software Engineering degrees online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Read More

by upGrad

01 Feb'18
Big Data: What is it and Why does it Matter?

5.6K+

Big Data: What is it and Why does it Matter?

If you’re a complete newbie in the world of Big Data, the term itself might be slightly confusing. Before we move to the technicalities, let’s ask two essential questions: How big? What data? The answer to the first question isn’t fixed – it would’ve changed by the time you’d have completed reading this line. For all we know, by the time you’ve read through the article, the total amount of data in the world would have soared by quite a bit. According to IBM, we create roughly 2.5 quintillion bytes of data per day – To put things in perspective, that is the capacity you’ll need to hold around 530,000,000 MP3 songs. Look at that number again, there are quite a lot of zeros in there. Now, let’s talk about the “what”. What data is this? It’s almost like the famous song by The Police, which goes something like… “Every breath you take, every move you make, every bond you break, every step you take, I’ll be watching you.” And that’s what they’re doing. By they, we simply mean the ones who’re in charge of collecting this data. Everything you do on the internet is adding to this colossal mountain of data. Your Facebook posts, Tweets, Snapchat stories, and whatever the kids are using these days – are just bricks in the huge wall of Big Data. Watch Youtube video. So, to answer your second question – the data in question is the very data you’re producing every passing moment. Every time you book a cab, or order food online, or even do a very basic google search – It’s all going on top of the heap. Everything is being collected. That’s what is making this big data, bigger – every passing minute.   Now that you’re in control of the situation, let’s dive a little deeper into the ocean of Big Data. Further, we’ll look at why exactly does Big Data matter so much, and who’re the ones benefiting from it? Explore our Popular Software Engineering Courses Master of Science in Computer Science from LJMU & IIITB Caltech CTME Cybersecurity Certificate Program Full Stack Development Bootcamp PG Program in Blockchain Executive PG Program in Full Stack Development View All our Courses Below Software Engineering Courses What is Big Data? By now, we’re clear that Big Data is just an extremely large volume of data – both structured and unstructured – collected through a variety of sources and in a variety of formats. For the sake of a formal definition, you can have a look at how IBM defines “Big Data”: According to the data scientists at IBM, Big Data can typically be characterized by 4 V’s – Volume, Variety, Velocity, and Veracity. Volume Very simply, volume means how “big” the Big Data is. Like we said earlier, there’s no specific number to it, it’s ever-increasing. Variety The data we’re talking about comes from a number of sources, hence it is in numerous formats. We’re talking about data in the form of audio, video, pdf, email, and more! Most of this data is unstructured – implying not much sense can be made out of it without a proper study.   Explore Our Software Development Free Courses Fundamentals of Cloud Computing JavaScript Basics from the scratch Data Structures and Algorithms Blockchain Technology React for Beginners Core Java Basics Java Node.js for Beginners Advanced JavaScript Velocity The flow of Big Data from the variety of sources we discussed above is massive and un-ending. Like we said, by the time you’ve read this article, the amount of Big Data in the world would have increased drastically. If you don’t believe us, listen to the guys at IBM who claim that by 2020, there’ll be 5,200 GB of data for each and every person on Earth. Yeah, talk about velocity! Veracity Veracity in context of Big Data simply refers to the noises and anomalies present in the data. When dealing with Big Data, veracity is one of the biggest challenges that data analysts face. By now, it’s clear that there’s a lot of data around us, almost too much to even think about! Making sense of this data is quite a daunting task in itself. For this, we have data analysts – the heart and soul of any organization’s analytics team – but how exactly do businesses use data to power their operations? Let’s see. In-Demand Software Development Skills JavaScript Courses Core Java Courses Data Structures Courses Node.js Courses SQL Courses Full stack development Courses NFT Courses DevOps Courses Big Data Courses React.js Courses Cyber Security Courses Cloud Computing Courses Database Design Courses Python Courses Cryptocurrency Courses Big Data matters – but why? The organizations which earlier had to rely on the data collected through archaic spreadsheets now have access to tonnes of data on their customers. Data that can be used to overhaul their business and make profits like never before. Watch Youtube video. Sherlock Holmes puts it right – “It’s a capital mistake to theorize before one has data!” And today, businesses HAVE data – a lot of it. But how exactly does it help them? By carefully examining the data at hand, organizations are performing the following kinds of intricate analytics to gather actionable insights and perform better in the market: Social listening It gives the organizations the power to know the real-time feedback of their consumers. The days of polls or surveys are long gone – sentiment analysis provides much more comprehensive and actionable feedback. Tools like HootSuite, TweetReach, Klout, and BuzzSumo are just a few examples of social listening tools that help the organizations stay a step ahead by knowing what the consumers have to say, their sentiments, and feedback. Comparative analysis Thanks to Big Data, organizations can now compare their products, services, and overall brand image with their competitors by examining user-behavior metrics in real-time. Marketing analytics This helps organizations in promoting new products and services to the target audience in a much more informed and innovative way. There are various sophisticated tools dedicated to Marketing Analytics which help organizations keep a close eye on how their product is being received in the market. Some common tools for this include – Marketing Evolution, Predictive Modeling, Lattice Engines – all of which aim to improve the organization’s ROI by leveraging Big Data. Targeting Using this stream of Big Data analytics, organizations can dive into social media activity on any subject, based on a variety of sources, all in real-time. For example, let’s say you want to target specific customer groups and provide them with exclusive special offers – you can do that now, using Big Data. It’s a win-win situation for both the organization as well as the customers. The same tools as the ones discussed in Social Listening can be used for this purpose as well. Customer satisfaction Organizations can boost customer engagement manifold by analyzing Big Data from a multitude of sources. Also, using these metrics, they’re able to figure out, and eventually iron out any potential customer issues that might go viral – preserving brand loyalty and improving customer service, at the same time. Who’s using Big Data – Real-world applications It’s safe to say that no domain of business today is untouched by the magic that is Big Data. From banking, to healthcare, to social-media, to education, to even government sectors – the list can go on – everyone is trying their best to make sense of the data at hand and outperform their competition. Let’s see some major industries that are affected by the giant that is Big Data: Healthcare Providers Asia’s largest healthcare group – Apollo hospitals – is using Big Data and analytics to control HAI (hospital-acquired infections). Education Big data is used quite extensively to improve higher education. Take the example of the University of Tasmania. It has deployed a management system that tracks things like the time at which a student logs on to the system, time spent on different pages of the system, and even the overall progress of the student. Government Operations Big Data has a wide range of applications in government operations and services. They include energy exploration, fraud detection, environmental protection, financial analysis, and health-related research. We can go on and on about each and every industry, but we think you get the gist. Big Data analytics is being used wherever it is possible. And frankly, there’s no domain that can’t use a little data analytics to improve their operations. Because at the end of the day, data is all that’s there, and all there will ever be. To wrap things up… It’s safe to say that Big Data is not just a fad – it’s a revolution. It’s always better to stay on your toes when you’re in the middle of a revolution, or you’ll be left behind before you know it. What makes one particular organization stand out from the rest is the way they deal with their data. Having said that, it’s only fair to conclude by saying that the demand for good data scientists is, and will keep on, increasing. So, buckle up while you can, and get started with exploring the mad but genius world of Big Data! If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore. Learn Software Engineering degrees online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career. Read our Popular Articles related to Software Development Why Learn to Code? How Learn to Code? How to Install Specific Version of NPM Package? Types of Inheritance in C++ What Should You Know?
Read More

by Mohit Soni

05 Feb'18