Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconWhat is Machine Learning and Why it matters

What is Machine Learning and Why it matters

Last updated:
11th Jun, 2018
Read Time
6 Mins
share image icon
In this article
Chevron in toc
View All
What is Machine Learning and Why it matters

Artificial Intelligence, Machine Learning, Deep learning are three of the hottest buzzwords in the industry today. And often, we tend to use the terms Artificial Intelligence (AI) and Machine Learning  (ML) synonymously.

Top Machine Learning and AI Courses Online

However, these two terms are very different – machine learning is one among the crucial aspects of the much broader field of AI.
Nidhi Chappell, the Head of ML at Intel puts it down aptly:

“AI is basically the intelligence – how we make machines intelligent, while machine learning is the implementation of the compute methods that support it. The way I think of it is: AI is the science and machine learning is the algorithms that make the machines smarter.”

Ads of upGrad blog

Thus, to put it in simple words, AI is a field that involves in making machines into “intelligent and smart” units, whereas ML is a branch under artificial intelligence that deals in teaching the computer to “learn” to perform tasks on its own.

The Difference between Data Science, Machine Learning and Big Data!

Now, let’s delve into the what is Machine Learning.

What is Machine Learning?

According to SAS, “Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention.”

Trending Machine Learning Skills

Enrol for the ML Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

Even though the term machine learning has been under the spotlight only recently, the concept of machine learning has existed since a long time, the earliest example of it being Alan Turing’s Enigma machine that he developed during World War II. Today, machine learning is almost everywhere around us, right from the ordinary things in our lives to the more complicated calculations involving Big Data. For instance, Google’s self-driving car and the personalized recommendations on sites such as Netflix, Amazon, and Spotify, are all outcomes of Machine Learning.

How Do Machines Learn?

To better understand the question “what is Machine Learning,” we have to know the techniques by which machines can ‘learn’ by themselves. There are three primary ways in which devices can learn to do things – supervised learning, unsupervised learning, and reinforcement learning. While nearly 70% of ML is supervised, only about 10-20% of ML is unsupervised learning.

  1. Supervised Learning

Supervised learning deals in clearly defined and outlined inputs and outputs and the algorithms here are trained through labelled tags. In supervised learning, the learning algorithm receives both the defined set of inputs along with the correct set of outputs. So, the algorithm would then modify the structure according to the pattern it perceives in the inputs and outputs received. This is a pattern recognition model of learning that involving methods such as classification, regression, prediction, and gradient boosting.

Supervised learning is usually applied in cases involving historical data. For instance, using the historical data of credit card transactions, supervised learning can predict the future possibilities of faulty or fraudulent card transactions.

Neural Networks: Applications in the Real World

  1. Unsupervised Learning

Contrary to supervised learning that uses historical data sets, unsupervised learning is apps that lack any historical data whatsoever. In this method, the learning algorithm goes beyond data to come up with the apt structure – although the data is devoid of tags, the algorithm splits the data into smaller chunks according to their respective characteristics, most commonly with the aid of a decision tree. Unsupervised learning is ideal for transactional data applications, such as identifying customer segments and clusters with specific attributes.

Unsupervised learning algorithms are mostly used in creating personalized content for individual user groups. Online recommendations on shopping platforms and identification of data outliers are two great examples of unsupervised learning.

  1. Reinforcement Learning

Reinforcement learning is quite similar to traditional data analysis method where the algorithms learn through trial and error method, after which it declares the outcomes with the best possible results. Reinforcement learning is comprised of three fundamental components – agent, environment, and actions. The agent here refers to the learner/decision-maker; the environment consists of all that which the agent interacts with, and the actions refer to the things that the agent can perform.
This type of learning helps improve the algorithm over time because it continues to adjust the algorithm as and when it detects errors in it. Google Maps routes are one of the most excellent examples of reinforcement learning.
Now that you’re aware of what is Machine Learning, including the types in which you can make the machines learn, let’s now look at the various applications of Machine Learning in the world today.

These 6 Machine Learning Techniques are Improving Healthcare

Why Is Machine Learning Important In Today’s World?

After what is machine learning, comes the next important question – “what is the importance of machine learning?”
The main focus of machine learning is to help organizations enhance their overall functioning, productivity, and decision-making process by delving into the vast amounts of data reserves. As machines begin to learn through algorithms, it will help businesses to unravel such patterns within the data that can help them make better decisions without the need for human intervention. Apart from this upfront benefit, machine learning has the following advantages:

Timely Analysis And Assessment

By sifting through massive amounts of data such as customer feedback and interaction, ML algorithms can help you conduct timely analysis and assessment of your organizational strategies. When you create a business model by browsing through multiple sources of data, you get a chance to see the relevant variables. In this way, machine learning can help you to understand the customer behaviour, thereby allowing you to streamline your customer acquisition and digital marketing strategies accordingly.  

Real-time Predictions Made Possible Through Fast Processing

One of the most impressive features of ML algorithms is that they are super fast, as a result of which data processing from multiple sources takes place rapidly. This, in turn, helps in making real-time predictions that can be very beneficial for businesses. For instance,

  • Churn analysis – It involves identifying those customer segments that are likely to leave your brand.
  • Customer leads and conversion – ML algorithms provide insights into the buying and spending patterns of various customer segments, thereby allowing businesses to devise strategies that can minimize losses and fortify profits.
  • Customer retention – ML algorithms can help identify the backlogs in your customer acquisition policies and marketing campaigns. With such insights, you can adjust your business strategies and improve the overall customer experience to retain your customer base.
Ads of upGrad blog

Popular AI and ML Blogs & Free Courses

Transforming Industries

Machine learning has already started to transform industries with its ability to provide valuable insights in real-time. Finance and insurance companies are leveraging ML technologies to identify meaningful patterns within large data sets, to prevent fraud, and to provide customized financial plans for various customer segments. In healthcare, wearables and fitness sensors powered by ML technology are allowing individuals to take charge of their health, consequently minimizing the pressure on health professionals. Machine learning is also being used by the oil and gas industry to find out new energy sources, analyzing the minerals in the ground, predict system failures, and so on.

Machine Learning Engineers: Myths vs. Realities

Of course, all of this is just tip of the iceberg. If you are curious to understand what is Machine Learning in depth, it’s better to look deeper into the technology. We hope we were able to help you understand what is machine learning, at least on the surface. There’s always so much more to do and learn, that merely asking “what is machine learning” will only help a little. It’s your time to dig deeper and get hands-on with the technology!


Sumit Shukla

Blog Author
Sumit is a Level-1 Data Scientist, Sports Data Analyst and a Content Strategist for Artifical Intelligence and Machine Learning at UpGrad. He's certified in sports technology and science from FC Barcelona's technology innovation hub.
Get Free Consultation

Selectcaret down icon
Select Area of interestcaret down icon
Select Work Experiencecaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Explore Free Courses

Suggested Blogs

Top 5 Natural Language Processing (NLP) Projects & Topics For Beginners [2024]
What are Natural Language Processing Projects? NLP project ideas advanced encompass various applications and research areas that leverage computation
Read More

by Pavan Vadapalli

30 May 2024

Top 8 Exciting AWS Projects & Ideas For Beginners [2024]
AWS Projects & Topics Looking for AWS project ideas? Then you’ve come to the right place because, in this article, we’ve shared multiple AWS proj
Read More

by Pavan Vadapalli

30 May 2024

Bagging vs Boosting in Machine Learning: Difference Between Bagging and Boosting
Owing to the proliferation of Machine learning applications and an increase in computing power, data scientists have inherently implemented algorithms
Read More

by Pavan Vadapalli

25 May 2024

45+ Best Machine Learning Project Ideas For Beginners [2024]
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

21 May 2024

Top 9 Python Libraries for Machine Learning in 2024
Machine learning is the most algorithm-intense field in computer science. Gone are those days when people had to code all algorithms for machine learn
Read More

by upGrad

19 May 2024

Top 15 IoT Interview Questions & Answers 2024 – For Beginners & Experienced
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

19 May 2024

40 Best IoT Project Ideas & Topics For Beginners 2024 [Latest]
In this article, you will learn the 40Exciting IoT Project Ideas & Topics. Take a glimpse at the project ideas listed below. Best Simple IoT Proje
Read More

by Kechit Goyal

19 May 2024

Top 22 Artificial Intelligence Project Ideas & Topics for Beginners [2024]
In this article, you will learn the 22 AI project ideas & Topics. Take a glimpse below. Best AI Project Ideas & Topics Predict Housing Price
Read More

by Pavan Vadapalli

18 May 2024

Image Segmentation Techniques [Step By Step Implementation]
What do you see first when you look at your selfie? Your face, right? You can spot your face because your brain is capable of identifying your face an
Read More

by Pavan Vadapalli

16 May 2024

Schedule 1:1 free counsellingTalk to Career Expert
footer sticky close icon