- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
6 Types of Activation Function in Neural Networks You Need to Know
Updated on 15 February, 2024
63.87K+ views
• 13 min read
Table of Contents
- What is an Artificial Neural Network in Soft Computing?
- Why do we use Activation functions with Neural Networks?
- Core Characteristics of Artificial Neural Networks
- Components of Artificial Neural Networks
- What are Activation Functions in a Neural Network?
- Types of Activation Functions in Neural Networks
- How to Choose the Right Activation Function?
- Conclusion
Working in artificial intelligence, one quickly learns the importance of understanding the types of activation function in neural networks. These functions are the heartbeats of neural networks, determining the output of a neural node. They’re not merely mathematical tools; they act as decision-makers, enabling networks to capture complex patterns and undertake tasks ranging from straightforward classification to comprehending human languages.
In this article, I’ll explore the significance of activation functions, setting the stage for deeper insights into Artificial Neural Networks in soft computing, their core characteristics, components, and crucially, the process of selecting the appropriate activation function. My journey has underscored that grasping these functions is essential for developing effective neural models. Whether you’re starting out or seeking to deepen your AI expertise, mastering these functions is key to advancing in this field.
Read more about types of artificial neural networks in machine learning.
What is an Artificial Neural Network in Soft Computing?
Artificial Neural Network is a Deep Learning model that draws inspiration from the neural structure of the human brain. ANNs have been designed to mimic the functions of the human brain that learn from experiences and adapt accordingly to the situation. Like the human brain has a multi-tiered structure containing billions of neurons arranged in a hierarchy, ANN also has a network of neurons that are interconnected to each other via axons.
These interconnected neurons pass electrical signals (called synapses) from one layer to another. This imitation of brain modeling allows the ANN to learn from experience without requiring human intervention.
Read: Artificial Neural Network in Data Mining
Thus, ANNs are complex structures containing interconnected adaptive elements known as artificial neurons that can perform large computations for knowledge representation. They possess all the fundamental qualities of the biological neuron system, including learning capability, robustness, non-linearity, high parallelism, fault and failure tolerance, ability to handle imprecise and fuzzy information, and generalizing ability.
Join the Artificial Intelligence Courses online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
Why do we use Activation functions with Neural Networks?
Let’s understand the reasons why we use activation functions with Neural Networks:
- Introduction of Non-Linearity: Activation functions introduce non-linearities, enabling neural networks to capture complex patterns and relationships in data that linear functions cannot represent effectively.
- Facilitating Complex Representations: Neural networks need to learn hierarchical and abstract representations, which activation functions allow. This ability is crucial for understanding intricate features in the data.
- Mitigating Vanishing or Exploding Gradients: Activation functions control the scale of outputs, preventing issues like vanishing or exploding gradients during backpropagation. This ensures stable and effective training.
- Enabling Decision Boundaries: Activation functions define decision boundaries, determining when neurons should activate or remain inactive based on input. This is fundamental for accurate classifications.
- Handling Non-Linear Mappings: Activation functions empower networks to approximate non-linear mappings between inputs and outputs, crucial for modeling real-world problems with non-linear relationships.
Core Characteristics of Artificial Neural Networks
- Non-linearity imparts a better fit to the data.
- High parallelism promotes fast processing and hardware failure-tolerance.
- Generalization allows for the application of the model to unlearned data.
- Noise insensitivity that allows accurate prediction even for uncertain data and measurement errors.
- Learning and adaptivity allow the model to update its internal architecture according to the changing environment.
ANN-based computing primarily aims to design advanced mathematical algorithms that allow Artificial Neural Networks to learn by imitating the information processing and knowledge acquisition functions of the human brain.
Components of Artificial Neural Networks
ANNs are comprised of three core layers or phases – an input layer, hidden layer/s, and an output layer.
- Input Layer: The first layer is fed with the input, that is, raw data. It conveys the information from the outside world to the network. In this layer, no computation is performed – the nodes merely pass on the information to the hidden layer.
- Hidden Layer: In this layer, the nodes lie hidden behind the input layer – they comprise the abstraction part in every neural network. All the computations on the features entered through the input layer occur in the hidden layer/s, and then, it transfers the result to the output layer.
- Output Layer: This layer depicts the results of the computations performed by the network to the outer world.
Neural networks can be categorized into different types based on the activity of the hidden layer/s. For instance, in a simple neural network, the hidden units can construct their unique representation of the input. Here, the weights between the hidden and input units decide when each hidden unit is active.
Thus, by adjusting these weights, the hidden layer can choose what it should represent. Other architectures include the single layer and multilayer models. In a single layer, there’s usually only an input and output layer – it lacks a hidden layer. Whereas, in a multilayer model, there is one or more than one hidden layer.
Must Read: Free NLP online course!
What are Activation Functions in a Neural Network?
As we mentioned earlier, ANNs are a crucial component of many structures that are helping revolutionize the world around us. But have you ever wondered, how do ANNs deliver state-of-the-art performance to find solutions to real-world problems?
The answer is – Activation Functions.
ANNs use the Activation Function in soft computing (AFs) to perform complex computations in the hidden layers and then transfer the result to the output layer. The primary purpose of AFs or Activation Function in soft computing is to introduce non-linear properties in the neural network.
They convert the linear input signals of a node into non-linear output signals to facilitate the learning of high order polynomials that go beyond one degree for deep networks. A unique aspect of AFs is that they are differentiable – this helps them function during the backpropagation of the neural networks.
In order to determine whether a neuron should be activated or not, the activation function in neural network calculate a weighted total and then adds bias to it. The activation functions’ goal is to make a neuron’s output less linear.
Explanation :-
We know that neurons in neural networks behave according to weight, bias, and their respective activation roles. We would adjust the weights and biases of the neurons in a neural network based on the output inaccuracy. Back-propagation is the term for this method. Activation functions make back-propagation possible since they provide the gradients and errors required to modify the weights and biases.
Why do we require Non-linear activation functions: An unactivated neural network is essentially a linear regression model. The activation function transforms the input in a non-linear way, enabling it to learn and carry out more difficult tasks. Here is the activation function in neural network example for you.
Mathematical proof:
Think we have a neutral net something like this:
Elements of the diagram :-
Hidden layer i.e. layer 1 :-
z(1) = W(1)X + b(1)
a(1) = z(1)
Here,
z(1) is the vectorized output of layer 1
W(1) be the vectorized weights assigned to neurons of hidden layer i.e. w1, w2, w3 and w4
X be the vectorized input features i.e. i1 and i2
b is the vectorized bias assigned to neurons in hidden layer i.e. b1 and b2
a(1) is the vectorized form of any linear function.
(Note: We won’t be considering activation function here)
Layer 2 i.e. output layer:
// Note : Input for layer
// 2 is output from layer 1
z(2) = W(2)a(1) + b(2)
a(2) = z(2)
Calculation at Output layer:
// Putting value of z(1) here
z(2) = (W(2) * [W(1)X + b(1)]) + b(2)
z(2) = [W(2) * W(1)] * X + [W(2)*b(1) + b(2)]
Let,
[W(2) * W(1)] = W
[W(2)*b(1) + b(2)] = b
Final output : z(2) = W*X + b
Which is again a linear function.
This activation function in neural network example yields a linear function once more even after the addition of a hidden layer, leading us to the conclusion that no matter how many hidden layers we add to a neural network, all of them will behave consistently because of the union of two linear functions yields a linear function as well. With only a linear function attached to it, a neuron cannot learn. It can learn according to the difference in mistake rate given a non-linear activation function.
So, an activation function is required.
What is the need for non-linearity?
If activation functions are not applied, the output signal would be a linear function, which is a polynomial of one degree. While it is easy to solve linear equations, they have a limited complexity quotient and hence, have less power to learn complex functional mappings from data. Thus, without AFs, a neural network would be a linear regression model with limited abilities.
This is certainly not what we want from a neural network. The task of neural networks is to compute highly complicated calculations. Furthermore, without AFs, neural networks cannot learn and model other complicated data, including images, speech, videos, audio, etc.
AFs help neural networks to make sense of complicated, high dimensional, and non-linear Big Data sets that have an intricate architecture – they contain multiple hidden layers in between the input and output layer.
Read: Deep Learning Vs Neural Network
Now, without further ado, let’s dive into the different types of activation functions used in ANNs.
Types of Activation Functions in Neural Networks
1. Sigmoid Function
The first type of activation function in neural network is the sigmoid function. The sigmoid function is a non-linear AF used primarily in feedforward neural networks. It is a differentiable real function, defined for real input values, and containing positive derivatives everywhere with a specific degree of smoothness. The sigmoid function appears in the output layer of the deep learning models and is used for predicting probability-based outputs. The sigmoid function is represented as:
Generally, the derivatives of the sigmoid function are applied to learning algorithms. The graph of the sigmoid function is ‘S’ shaped.
Some of the major drawbacks of the sigmoid function include gradient saturation, slow convergence, sharp damp gradients during backpropagation from within deeper hidden layers to the input layers, and non-zero centered output that causes the gradient updates to propagate in varying directions.
2. Hyperbolic Tangent Function (Tanh)
The hyperbolic tangent function, a.k.a., the tanh function, is another type of AF. It is a smoother, zero-centered function having a range between -1 to 1. As a result, the output of the tanh function is represented by:
The tanh function is much more extensively used than the sigmoid function since it delivers better training performance for multilayer neural networks. The biggest advantage of the tanh function is that it produces a zero-centered output, thereby supporting the backpropagation process. The tanh function has been mostly used in recurrent neural networks for natural language processing and speech recognition tasks.
However, the tanh function, too, has a limitation – just like the sigmoid function, it cannot solve the vanishing gradient problem. Also, the tanh function can only attain a gradient of 1 when the input value is 0 (x is zero). As a result, the function can produce some dead neurons during the computation process.
Best Machine Learning and AI Courses Online
3. Softmax Function
The softmax function is another type of AF used in neural networks to compute probability distribution from a vector of real numbers. This function generates an output that ranges between values 0 and 1 and with the sum of the probabilities being equal to 1. The softmax function is represented as follows:
This function is mainly used in multi-class models where it returns probabilities of each class, with the target class having the highest probability. It appears in almost all the output layers of the DL architecture where they are used. The primary difference between the sigmoid and softmax AF is that while the former is used in binary classification, the latter is used for multivariate classification.
4. Softsign Function
The softsign function is another AF that is used in neural network computing. Although it is primarily in regression computation problems, nowadays it is also used in DL based text-to-speech applications. It is a quadratic polynomial, represented by:
This function is mainly used in multi-class models where it returns probabilities of each class, with the target class having the highest probability. It appears in almost all the output layers of the DL architecture where they are used. The primary difference between the sigmoid and softmax AF is that while the former is used in binary classification, the latter is used for multivariate classification.
4. Softsign Function
The softsign function is another AF that is used in neural network computing. Although it is primarily in regression computation problems, nowadays it is also used in DL based text-to-speech applications. It is a quadratic polynomial, represented by:
Here “x” equals the absolute value of the input.
The main difference between the softsign function and the tanh function is that unlike the tanh function that converges exponentially, the softsign function converges in a polynomial form.
5. Rectified Linear Unit (ReLU) Function
One of the most popular AFs in DL models, the rectified linear unit (ReLU) function, is a fast-learning AF that promises to deliver state-of-the-art performance with stellar results. Compared to other AFs like the sigmoid and tanh functions, the ReLU function offers much better performance and generalization in deep learning. The function is a nearly linear function that retains the properties of linear models, which makes them easy to optimize with gradient-descent methods.
The ReLU function performs a threshold operation on each input element where all values less than zero are set to zero. Thus, the ReLU is represented as:
By rectifying the values of the inputs less than zero and setting them to zero, this function eliminates the vanishing gradient problem observed in the earlier types of activation function in soft computing (sigmoid and tanh).
The most significant advantage of using the ReLU function in computation is that it guarantees faster computation – it does not compute exponentials and divisions, thereby boosting the overall computation speed. Another critical aspect of the ReLU function is that it introduces sparsity in the hidden units by squishing the values between zero to maximum.
In-demand Machine Learning Skills
6. Exponential Linear Units (ELUs) Function
The exponential linear units (ELUs) function is an AF that is also used to speed up the training of neural networks (just like ReLU function). The biggest advantage of the ELU function is that it can eliminate the vanishing gradient problem by using identity for positive values and by improving the learning characteristics of the model.
ELUs have negative values that push the mean unit activation closer to zero, thereby reducing computational complexity and improving the learning speed. The ELU is an excellent alternative to the ReLU – it decreases bias shifts by pushing mean activation towards zero during the training process.
The exponential linear unit function is represented as:
The derivative or gradient of the ELU equation is presented as:
Here “α” equals the ELU hyperparameter that controls the saturation point for negative net inputs, which is usually set to 1.0. However, the ELU function has a limitation – it is not zero-centered.
Popular AI and ML Blogs & Free Courses
How to Choose the Right Activation Function?
I have mentioned the top points you should be using to choose an activation function:
- Problem Type Consideration:
- Different problems require different activation functions based on their characteristics.
- For binary classification tasks, where the output is binary (0 or 1), the sigmoid function is commonly used.
- For multi-class classification tasks, where the output is one of several classes, the softmax function is preferred.
- For regression tasks, where the output is continuous, linear activation functions like the identity function are suitable.
- Address Gradient Issues:
- Some activation functions, like sigmoid and tanh, can cause vanishing or exploding gradients during training, hindering convergence.
- Rectified Linear Unit (ReLU) and its variants (Leaky ReLU, Parametric ReLU) are effective in addressing this issue, as they do not saturate for positive input values.
- Handling Non-Linearity:
- Activation functions introduce non-linearity to the network, allowing it to learn complex patterns in the data.
- Functions like ReLU, tanh, and sigmoid introduce non-linear transformations to capture intricate relationships between input and output.
- Computational Efficiency:
- Some activation functions are computationally expensive, which can affect training time and resource utilization.
- ReLU is a computationally efficient choice, as it involves simple mathematical operations and is widely used in practice.
- Output Range Constraint:
- The choice of activation function should match the desired output range of the network.
- The sigmoid function is suitable for tasks where the output needs to be bounded between 0 and 1, such as binary classification.
- Experimental Validation:
- Ultimately, the selection of the activation function should be validated empirically.
- Experiment with different activation functions and assess their performance on a validation dataset to determine the most suitable option for the specific task and dataset.
Conclusion
Understanding the types of activation function in neural networks is crucial for anyone venturing into the realm of artificial intelligence and machine learning. These functions are not just mathematical conveniences but the very essence that allows neural networks to make complex decisions and learn from data. From the sigmoid to ReLU, each activation function has its unique characteristics and applications, making the choice of the right one pivotal to the success of a neural network model. This article has traversed the landscape of artificial neural networks, highlighting their core characteristics, components, and, most importantly, the pivotal role of activation functions. Choosing the appropriate activation function is a nuanced decision that depends on the specific requirements of the application, including the nature of the data and the desired complexity of the model. Armed with this knowledge, practitioners and enthusiasts alike are better positioned to harness the power of neural networks, pushing the boundaries of what’s possible in soft computing and beyond.
Check out Master of Science in Machine Learning & AI with IIIT Bangalore, the best engineering school in the country to create a program that teaches you not only machine learning but also the effective deployment of it using the cloud infrastructure. Our aim with this program is to open the doors of the most selective institute in the country and give learners access to amazing faculty & resources in order to master a skill that is in high & growing
Frequently Asked Questions (FAQs)
1. What is an Artificial Neural Network?
The ANN is a Deep Learning model that is inspired by the human brain's neural structure. ANNs were created to replicate the activities of the human brain, which learn from their experiences and adapt to their surroundings. ANN contains a network of neurons that are connected to each other by axons, similar to how the human mind has a multi-tiered structure with billions of neurons arranged in a hierarchy. Electrical signals (called synapses) are sent from one layer to the next by these linked neurons. The ANN can learn from experience without the need for human involvement thanks to this approximation of brain modelling.
2. What are activation functions in neural networks?
ANNs employ activation functions (AFs) in the hidden layers to conduct complex computations and then transfer the results to the output layer. The basic goal of AFs is to give the neural network non-linear qualities. They turn a node's linear input signals to non-linear output signals to help deep networks learn high-order polynomials with more than one degree. AFs are distinct in that they are differentiable, which aids their role during neural network backpropagation.
3. What is the need for non-linearity?
If no activation functions are used, the output signal is a linear transformation, which is a one-degree polynomial. While linear equations are simple to solve, they have a low complexity quotient, which limits their ability to learn complicated mappings from data. A neural network without AFs will be a generalized linear model with limited capabilities. This is not the kind of performance we want from a neural network. Neural networks are used to perform extremely complex calculations. Furthermore, neural networks cannot learn and represent other complex data without AFs, such as photos, voice, movies, audio, and so on.
Did you find this article helpful?
Our Trending Courses 2
MS in Machine Learning & AI DBA in Emerging Technologies with concentration in Generative AIOur Trending Skill 4
Artificial Intelligence Courses Tableau Courses NLP Courses Deep Learning CoursesGet Free Counsultation
By clicking "Submit" you Agree toupGrad's Terms & Conditions