Blog_Banner_Asset
    Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconMachine Learning Career Path: 5 Demanding & Diverse Roles

Machine Learning Career Path: 5 Demanding & Diverse Roles

Last updated:
9th Oct, 2022
Views
Read Time
10 Mins
share image icon
In this article
Chevron in toc
View All
Machine Learning Career Path: 5 Demanding & Diverse Roles

The market for Artificial Intelligence and Machine Learning is extremely hot right now. 

It’s no surprise that the Artificial intelligence talent market is white-hot at present. In fact, Gartner maintains that the business value of AI will stand at $3.9 trillion in 2022., while IDC estimates that the worldwide spending on cognitive and artificial intelligence systems will reach $77.6 billion by 2022.

Top Machine Learning and AI Courses Online

Reinstating the tremendous impact that AI is set to create in the near future, a 2019 report by the McKinsey Global Institute states that AI and ML hold the potential to create an additional business value of around $1.4-2.6 trillion in global marketing and sales, and another $1.2-2 trillion in supply-chain management and manufacturing by 2020.

Ads of upGrad blog

Machine learning is highly useful for organizations and is here to stay. Machine learning allows organizations to read the data accurately and perform business operations that support business goals.

The machine learning model allows the business software to predict the data accurately and thus provide a richer experience. 

The wide adaptability of machine learning is due to various reasons, some of which are mentioned below-

  1. Transparency
  2. Accuracy
  3. Time efficiency
  4. Cost-benefit
  5. Real-time results

Trending Machine Learning Skills

Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

What do these stats depict?

These statistics only show how AI and ML are penetrating the industry at an unprecedented pace. Today, almost every sector of the industry – healthcare, education, retail, manufacturing, supply chain and logistics, BFSI, and even governance – is leveraging the applications of AI and ML in some way or the other. Naturally, as the adoption of these intelligent technologies is increasing, so is the demand for skilled professionals in AI and ML increasing. This is the time to build your Machine Learning career path!

The application of machine learning is in almost every industry, thus adding to its popularity. Some of the examples are listed below-

  1. E-Commerce
  2. Finance 
  3. Banking
  4. Retail
  5. Image Recognition
  6. Speech Recognition
  7. Traffic Prediction
  8. Healthcare
  9. Transportation
  10. Manufacturing
  11. Stock market trading

The wide applicability and relevancy result in the popularity of careers in machine learning.

Good Read: Future scope of Machine Learning

According to a 2019 Indeed report, Machine Learning Engineer is the #1 job in the list of The Best Jobs in the US, recording a whopping 344% growth with a median salary of $146,085 per year. In India, the national average salary for Machine Learning jobs is ₹11,05,748. This makes the machine learning career a lucrative career option.

The demand for talented and skilled professionals in Machine Learning is at its peak now, and in the future, it will only escalate higher. The great thing about a Machine Learning career is that apart from job satisfaction and security, it also promises hefty annual compensation and fast career growth. All the more reason to consider building a Machine Learning career path. 

Machine Learning Career Paths

Once you have acquired the right ML skills, here are the top five promising Machine Learning career paths that you can aspire for:

1. Machine Learning Engineer

As we said earlier, a Machine Learning Engineer career path is one of the most coveted and promising ones in the field of Data Science. Machine Learning Engineers are primarily involved with the design and development of ML systems and applications by using ML algorithms and tools.

Machine learning engineers are also required for creating programs or models that can run without human supervision. Depending upon the requirement these engineers make models that follow different types of learning such as unsupervised, supervised or reinforcement.

The professionals are also required to write programs and extract information pertaining to the requirement. They are also required to perform, analyze or monitor the data structures. The demand for skilled professionals is very high as reflected in the numerous machine learning job roles available in the market.

It is their job to shape and develop efficient self-learning ML applications by performing statistical analysis and fine-tuning them using test results. They also conduct and run various ML experiments using programming languages such as Python, Java, Scala, R, and C++, to name a few.

Skills required: A Machine Learning Engineer must have a strong foundational knowledge of Mathematics, Statistics, and programming. He/she should be well-versed in software architecture, system design, data structures, data modeling, and ML algorithms. Read more about machine learning skills.

On average, the salary of a machine learning engineer is 7.5 lakhs per annum. The average salary ranges from 3.5 lakhs per annum to 22.0 lakhs per annum (Source). The salary bracket may differ, owing to various factors such as location, skill sets, experience, company, etc.

2. Data Scientist

The job profile of a Data Scientist has been hailed as the “Sexiest Job of the 21st Century” by a Harvard Business review article. If this does not establish the popularity of this Machine Learning career path, what will?

Data Scientists are high-profile experts who leverage advanced technologies (like Big Data, AI, ML, Deep Learning, etc.) and analytical tools on a daily basis to collect, store, process, analyze, and interpret massive amounts of data. Their primary duty is to extract valuable insights from large datasets that can be converted into business value. 

The data scientists are required to gather the data from the source and identify the pattern or trend. They are also required to process a huge amount of data into a structured format that is beneficial to the organization. Through their expertise, they are required to run various algorithms and methods that help them in building models that aid the operations of the organization. After gaining valuable insights from the data, they are also required to create reports and present them to the relevant stakeholders.

Skills required: Just like an ML Engineer, a Data Scientist must have good knowledge of Mathematics, Statistics, and programming (mainly in Python). Data Scientists must also have thorough experience of data mining and how to apply various statistical research techniques and use Big Data platforms (Hadoop, Pig, Hive, Spark, Flume, etc.). Read more about data science skills.

There are various applications to data science. It is used in numerous industries such as education, e-commerce, finance, banking, transport, etc. 

The presence of data scientists makes it possible to work with data meaningfully and gain useful insights from it. The professionals are able to bring accuracy in the decision-making that helps the organizations in reaping benefits. Data science is a fruitful machine learning engineer career path to choose whole starting out the journey. There are many job roles to choose in the field of data science. 

On average the salary of a data scientist is 10.5 lakhs per annum. The average salary ranges from 4.5 lakhs per annum to 25.9 lakhs per annum (Source). Young professionals choose from many AI ML jobs for freshers and make successful and stable careers for themselves.  

machine learning career path

Source

3. NLP Scientist

Natural language processing (NLP) aims to impart machines with the ability to understand natural human languages. NLP Scientists are primarily responsible for designing and developing machines and applications that can learn the patterns of speech of a human language and also translate spoken words into other languages. The goal here is to help machines comprehend human languages as naturally as humans do. Grammarly and Duolingo are two excellent examples of NLP applications.

Skills required: Since the primary job of NLP Scientists is to teach machines how to understand the nuances of human languages, they must be fluent in the syntax, spelling, and grammar of at least one language (the more, the better). Also, they should have basic-level ML skills.

4. Software Developer/Engineer (AI/ML)

Software Developers/Engineers with specialization in AI/ML are the creative minds behind intelligent computer programs. Their main job is to develop efficient ML algorithms and applications. Software Developers/Engineers design, develop, and install AI/ML software solutions; create specific computer functions; prepare product documentation, flowcharts, layouts, diagrams, charts, etc. for visualization; write and test code; create technical specifications, upgrade and maintain systems, and much more.

Skills required: Software Developers/Engineers (AI/ML) must be proficient in coding in multiple programming languages, including Python, Java, R, C, C++, Scala, etc. They must possess a good understanding of operating systems, data structures, data architecture, computer architecture, data analytics, distributed processing, software testing and debugging, among other things. Also, they must have extensive knowledge of ML concepts, algorithms, systems, and tools. 

On average the salary of a software developer is 5.0 lakhs per annum. The average salary ranges from 2.2 lakhs per annum to 12.7akhs per annum (Source).

machine learning career path

Source

5. Human-Centred Machine Learning Designer

Machine Learning has an exclusive branch that is dedicated to designing ML algorithms centred around humans. Hence, the name Human-Centred Machine Learning. Human-Centered Machine Learning Designers are responsible for creating intelligent systems that can “learn” the preferences and behaviour patterns of individual humans through information processing and pattern recognition.

These systems require minimal or no human intervention or even cumbersome programs to account for every conceivable user scenarios. Netflix and Amazon’s Recommendation Engine is an excellent examples of Human-Centered Machine Learning.

Skills required: As is true of any Machine Learning career path, Human-Centered Machine Learning Designers must also possess an in-depth understanding of various ML concepts, algorithms, and how they function. They should also have a good base in Mathematics and Statistics along with coding proficiency.

Ads of upGrad blog

Popular AI and ML Blogs & Free Courses

Conclusion

While these are the top five Machine Learning career paths, there are many other career pathways in this domain, such as Data Analyst, Data Architect, Cloud Architect, and Business Intelligence Developer, to name a few. Ultimately the choice of a Machine Learning career path depends on you – what you wish to specialize in and what skills do you have and wish to acquire?

Many industries employ machine learning for different purposes so the demand increases day by day. If you would like to know more about careers in Machine Learning and Artificial Intelligence, check out IIIT Bangalore and upGrad’s Master of Science in Machine Learning & AI.

Profile

Kechit Goyal

Blog Author
Experienced Developer, Team Player and a Leader with a demonstrated history of working in startups. Strong engineering professional with a Bachelor of Technology (BTech) focused in Computer Science from Indian Institute of Technology, Delhi.
Get Free Consultation

Selectcaret down icon
Select Area of interestcaret down icon
Select Work Experiencecaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Frequently Asked Questions (FAQs)

1What are the skills required to opt for a career in ML?

Different Machine Learning professions require distinct skills to carry out the demands of their tasks. The first and most crucial requirement is coding skills in a programming language (any programming language, such as Python, C++, C, Java, etc.). Secondly, knowledge of fundamental statistics and calculus is another important skill, which comes in handy when creating Machine Learning algorithms. Machine learners will benefit from having knowledge of data engineering and software engineering skills. Students interested in a career in Machine Learning do not need to possess all of these skills because they can learn them over time.

2How are Machine Learning and Data Science related?

Machine Learning is one of the most interesting tools in the current Data Science world. It is one of the numerous tools available in the field of Data Science. Data Science is an interdisciplinary domain that makes use of the extensive amounts of data and processing power at its disposal to generate insights. In other words, it is a field in the technological world that focuses on extracting meaning and insights from a vast amount of data. Whereas, Machine Learning is a set of Data Science approaches that allow computers to comprehend data. These methods produce good results without the need for explicit rules to be programmed.

3Which is the most preferred programming language for Machine Learning professionals?

Python is the most preferred programming language for Machine learners. Most of the IT giants prefer Python because of many reasons. Continuous data processing is required for Machine Learning, and Python has built-in libraries and packages for almost every task. When working with complex Machine Learning applications, these features aid Machine Learning professionals in reducing development time and increasing productivity. Python's simple syntax and emphasis on code readability allow Machine Learning developers to concentrate on their writing rather than how they're writing it. Python's multi paradigm and flexible structure allows Machine Learning engineers to tackle a problem in the most straightforward way feasible.

Explore Free Courses

Suggested Blogs

45+ Best Machine Learning Project Ideas For Beginners [2024]
329967
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

21 May 2024

Top 15 IoT Interview Questions & Answers 2024 – For Beginners & Experienced
64857
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

19 May 2024

40 Best IoT Project Ideas & Topics For Beginners 2024 [Latest]
765594
In this article, you will learn the 40Exciting IoT Project Ideas & Topics. Take a glimpse at the project ideas listed below. Best Simple IoT Proje
Read More

by Kechit Goyal

19 May 2024

Top 22 Artificial Intelligence Project Ideas & Topics for Beginners [2024]
415164
In this article, you will learn the 22 AI project ideas & Topics. Take a glimpse below. Best AI Project Ideas & Topics Predict Housing Price
Read More

by Pavan Vadapalli

18 May 2024

Image Segmentation Techniques [Step By Step Implementation]
64038
What do you see first when you look at your selfie? Your face, right? You can spot your face because your brain is capable of identifying your face an
Read More

by Pavan Vadapalli

16 May 2024

6 Types of Regression Models in Machine Learning You Should Know About
283448
Introduction Linear regression and logistic regression are two types of regression analysis techniques that are used to solve the regression problem
Read More

by Pavan Vadapalli

16 May 2024

How to Make a Chatbot in Python Step By Step [With Source Code]
31309
Creating a chatbot in Python is an essential skill for modern developers looking to enhance user interaction and automate responses within application
Read More

by Kechit Goyal

13 May 2024

Artificial Intelligence course fees
5811
Artificial intelligence (AI) was one of the most used words in 2023, which emphasizes how important and widespread this technology has become. If you
Read More

by venkatesh Rajanala

29 Feb 2024

Artificial Intelligence in Banking 2024: Examples & Challenges
6689
Introduction Millennials and their changing preferences have led to a wide-scale disruption of daily processes in many industries and a simultaneous g
Read More

by Pavan Vadapalli

27 Feb 2024

Schedule 1:1 free counsellingTalk to Career Expert
icon
footer sticky close icon