Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconBuilding Blocks of Neural Networks: Components of Neural Networks Explained

Building Blocks of Neural Networks: Components of Neural Networks Explained

Last updated:
16th Dec, 2020
Read Time
8 Mins
share image icon
In this article
Chevron in toc
View All
Building Blocks of Neural Networks: Components of Neural Networks Explained


In recent years, Deep learning popularity has taken an abrupt slope in terms of usage and application in every sector of the industry. Whether it is image recognition, speech generation, translation, and many more such applications, almost every company wants to integrate this technology into one or the other products they are building. The reason for this supremacy over traditional machine learning algorithms is the accuracy and efficient performance provided by these Deep Learning models. 

Top Machine Learning and AI Courses Online

Though the infrastructure plays an important role in delivering these results, the core code does all the processing which is enclosed in a Neural Network. Let’s explore the various components of this network and then we will look at some fundamental units using these components. 

Trending Machine Learning Skills

Ads of upGrad blog

Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

Must Read: Neural Network Model Introduction

Various Components of Neural Network


The basic building block of a neural network is a neuron. This concept is very much similar to the actual neural network in our human brains. This artificial neuron takes all the inputs, aggregates them, and then based on a function gives the output of the neuron.

A neural network comprises many such neurons interconnected with each other in the form of layers known as the input, hidden, and output layers. This network enables us to map any kind of complex data pattern to a mathematical function, and this can be verified mathematically using the universal approximation theorem. 


The model can have weights so that high values can be suppressed using negative values. You can interpret this by taking an example of a smartphone purchase. The higher the price, the lower will be chances of purchasing that smartphone, but if our model adds up all the values and compares it with the threshold, the wrong prediction may be done. To nullify this effect, negative weights should reduce the sum and get the right prediction.

Activation Function

There was a mention in the neuron definition that based on a function, the neuron will output the result either to the next layer if it’s part of the input or hidden layer or used for further processing in the output layer.

This function is called the activation function, and this defines the state of the neuron. There are a lot of activation functions available in the market that can do the job but it all depends on the use case. Examples are the sigmoid function, tanh function, the softmax function, Relu (rectified linear unit), leaky Relu, and many more.

FYI: Free nlp course!

Learning Rate

It can control the pace of the weight update. Consider two cases where the learning rate acts as an important factor. If an input feature has more sparse values, then we need to update the weights more frequently, and that’s why a larger learning rate is desired. Similarly, a low learning rate can work in dense data. 

Let’s look at some fundamental units making use of these components in larger neural networks.

MP Neuron

This is the most basic form of Artificial Neuron that calculates the input sum and then passes it to the activation function to get the final output. Here is a visual of this:

The limiting factor to this is that the inputs should be binary and no real number is allowed. That means if we want to use a dataset with different values then that needs to be scaled to binary to be passed to the model.

The outputs of this model are also binary, which makes it hard to interpret the quality of results. The inputs don’t have any weights, so we can’t control how much contribution a feature will have to the result. 

Perceptron Neuron

One of the significant drawbacks of MP neurons was that it can’t accept real numbers as inputs, which can lead to undesirable results. It means that if we want to pass an input feature to this neuron with real numbers, it needs to be downscaled to 1’s or 0’s.  In this neuron model, there is no such limitation on inputs, but passing standardized inputs will give better results in less time as the aggregation of inputs would be fair for all the feature values.

A learning algorithm is also introduced, which makes this model even more robust to new inputs. The algorithm updates the weights applied to each input based on the loss function. The loss function determines the difference between the actual value and the predicted value by the model. Squared error loss is one such popular function used in deep learning models.

As the Perception neuron also gives out binary output, the loss can be zero or one. It means we can define the loss function of this type in a more compact way as “When the prediction is not equal to the true value, the loss is one and weights need to be updated else zero loss and no update needed”. The updates in the weights are done in the following way:

 w = w + x  if w.x < 0

 w = w – x   if w.x >= 0

Read: TensorFlow Object Detection Tutorial For Beginners

Sigmoid Neuron

The perceptron neuron seems promising as compared to the MP neuron, but there are still some issues that need to be addressed. One major flaw in both of them is that they only support binary classification. Another issue is the harsh classification boundaries that only output whether a particular case is possible. It doesn’t allow flexibility in predictions in the form of probabilities that are more interpretable than binary outputs.

To resolve all these issues, the Sigmoid neuron was introduced, which can be used for multi-classification and doing regression tasks. This model uses the sigmoid family of functions or logarithmic:

y = 1 / (1 + e^ (-w.x + b))

If we plot this function then it would take the ‘S’ shape where its position can be adjusted by using different values of ‘b’ which is the intercept of this curve. The output of this function always lies between 0 and 1, no matter how many inputs are passed. This gives out the probability of the class, which is better than rigid outputs. This also means we can have multiple classifications or perform regression.

The learning algorithm for this differs from the previous ones. Here the weights and bias are updated according to the derivative of the loss function.

This algorithm is commonly known as the Gradient Descent rule. The derivation and detailed explanation for this is quite lengthy and mathematical, therefore it is currently out of this article. In simple terms, it states that to get an optimal minima for the derivative of the loss function, we should move in a direction opposite to the gradient.

Ads of upGrad blog

Popular AI and ML Blogs & Free Courses


This was a brief introduction to Neural Networks. We saw the various basic components such as the neuron which acts as a mini-brain and processes the inputs, weights that allow to balance out values, learning rate to control how the pace of weights update and the activation function to fire up the neurons.

We also saw how the basic building block neuron can take different forms on increasing the complexity of the task. We started with the most basic form in the MP neuron, then eliminating some issues in the Perceptron neuron, and later on adding support for regression and multi-class classification tasks in the sigmoid neuron.

If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.


Pavan Vadapalli

Blog Author
Director of Engineering @ upGrad. Motivated to leverage technology to solve problems. Seasoned leader for startups and fast moving orgs. Working on solving problems of scale and long term technology strategy.
Get Free Consultation

Select Coursecaret down icon
Selectcaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Frequently Asked Questions (FAQs)

1What is a neural network in AI?

A neural network or artificial neural network (ANN) refers to a computational network inspired by biology, i.e., the neural networks present in the human brain. Just like the human brain consists of billions of neurons that form an interconnected network, the artificial neural network also comprises neurons that are interconnected at various layers. These neurons are also known as nodes in the realm of artificial intelligence. The concept of artificial neural networks is developed to impart computers human-like abilities to comprehend things and form decisions; the nodes or computers here are programmed to act like interconnected cells of our brain.

2What skills are needed to get a job in AI?

Since AI is a highly specialized field of computer science, those who aspire to build a career in AI must possess certain educational qualifications apart from skills like analytical thinking, design abilities, and problem-solving capabilities. Highly successful AI professionals also have the foresight of innovations in technology which enable modern businesses with cost-effective and efficient software solutions needed to stay ahead of the competition. Needless to say, excellent verbal and written communication skills are a must. A technical educational background is necessary to appreciate AI projects' logical, engineering, and technological perspectives.

3What are the general prerequisites for learning neural networks?

To work on any large-scale artificial intelligence project, it will be expected of you to have a clear understanding of the fundamentals of artificial neural networks. To build your basic concepts of neural networks, first and foremost, you must read ample books, articles, and news articles. Generally speaking, among the prerequisites for studying the concepts of neural networks, mathematics plays a vital role, especially, things like statistics, linear algebra, calculus, probability. Apart from that, computer programming skills in languages like Python, Java, R, and C++, will also be necessary. Intermediate programming skills can also be of great help here.

Explore Free Courses

Suggested Blogs

Top 9 Python Libraries for Machine Learning in 2024
Machine learning is the most algorithm-intense field in computer science. Gone are those days when people had to code all algorithms for machine learn
Read More

by upGrad

19 Feb 2024

Top 15 IoT Interview Questions &#038; Answers 2024 – For Beginners &#038; Experienced
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

19 Feb 2024

Data Preprocessing in Machine Learning: 7 Easy Steps To Follow
Summary: In this article, you will learn about data preprocessing in Machine Learning: 7 easy steps to follow. Acquire the dataset Import all the cr
Read More

by Kechit Goyal

18 Feb 2024

Artificial Intelligence Salary in India [For Beginners &#038; Experienced] in 2024
Artificial Intelligence (AI) has been one of the hottest buzzwords in the tech sphere for quite some time now. As Data Science is advancing, both AI a
Read More

by upGrad

18 Feb 2024

24 Exciting IoT Project Ideas &#038; Topics For Beginners 2024 [Latest]
Summary: In this article, you will learn the 24 Exciting IoT Project Ideas & Topics. Take a glimpse at the project ideas listed below. Smart Agr
Read More

by Kechit Goyal

18 Feb 2024

Natural Language Processing (NLP) Projects &amp; Topics For Beginners [2023]
What are Natural Language Processing Projects? NLP project ideas advanced encompass various applications and research areas that leverage computation
Read More

by Pavan Vadapalli

17 Feb 2024

45+ Interesting Machine Learning Project Ideas For Beginners [2024]
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

16 Feb 2024

AWS Salary in India in 2023 [For Freshers &#038; Experienced]
Summary: In this article, you will learn about AWS Salary in India For Freshers & Experienced. AWS Salary in India INR 6,07,000 per annum AW
Read More

by Pavan Vadapalli

15 Feb 2024

Top 8 Exciting AWS Projects &#038; Ideas For Beginners [2023]
AWS Projects & Topics Looking for AWS project ideas? Then you’ve come to the right place because, in this article, we’ve shared multiple AWS proj
Read More

by Pavan Vadapalli

13 Feb 2024

Schedule 1:1 free counsellingTalk to Career Expert
footer sticky close icon