Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow icon6 Machine Learning Skill Sets That Can Land You in a Perfect Job

6 Machine Learning Skill Sets That Can Land You in a Perfect Job

Last updated:
18th Aug, 2019
Read Time
5 Mins
share image icon
In this article
Chevron in toc
View All
6 Machine Learning Skill Sets That Can Land You in a Perfect Job

Would you be surprised if we told you that over 50,000 job vacancies in Data Science and Machine Learning remain unfulfilled in India? Considering the fact that Machine Learning is one of the hottest career fields right now, this may seem shocking, but it is the hard truth. Do you know the reason behind the demand-supply paradox of professionals in Data Science and ML?

Best Machine Learning and AI Courses Online

It is solely because there aren’t enough skilled and talented candidates ready to take on the booming job opportunities in these emerging fields. Gartner maintains that among the 10 lakh registered firms in India, as high as 75% have already invested or are ready to invest in Machine Learning. Clearly, job opportunities in Machine learning are bound to increase exponentially in the near future. The need of the hour is “upskilling” to fit the requirements of ML job profiles.

In-demand Machine Learning Skills

Ads of upGrad blog

Skills required to land Machine Learning jobs

1. Fundamental knowledge of Computer Science and Programming

To build a successful career in ML, you must first you need to have an in-depth understanding of the fundamental concepts of Computer Science including Data Structures (stacks, queues, trees, graphs, multi-dimensional arrays, etc.); Computer Architectures (memory, cache, bandwidth, distributed processing, etc.); Algorithms ( dynamic programming, searching, sorting, etc.), and Computability & Complexity (big-O notation, P vs NP, NP-complete problems, approximate algorithms, etc.), to name a few.

Once you understand these, you must learn how to employ and implement them while writing code. As for choosing a programming language, you can begin with Python. It is great for beginners and is the lingua franca of Machine Learning. You can hone your programming skills by taking part in online coding competitions and hackathons.

Join the Artificial Intelligence Course online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.

2. A strong rapport with Probability and Statistics

Statistics and probability concepts form the core of numerous ML algorithms. Naturally, it is imperative to have a strong knowledge and understanding of statistical concepts including Mean, Median, Variance, Derivatives, Integrals, Standard Deviations, etc.; Distributions (uniform, normal, binomial, etc.), and the various analysis methods (ANOVA, hypothesis testing, etc.) that are essential both for developing data models and validating them. Apart from statistical flair, you must also understand the fundamentals of probability like Bayes rule, likelihood, independence, Bayes Nets, Gaussian Mixture Models, Markov Decision Processes, Hidden Markov Models, and so on.

3. Experience in Data Modeling and Evaluation

One of the primary goals of Machine Learning is to analyze vast amounts of unstructured data. To do this, you must know the art of Data Modelling. Data Modeling is the technique of estimating the underlying data structure of a particular dataset to unravel and identify the hidden patterns within (clusters, correlations, eigenvectors, etc.) and also predict the properties of instances never seen before (classification, regression, anomaly detection, etc.).

During the Data Modelling process, you will be required to choose appropriate accuracy/error measures (for instance, log-loss for classification, sum-of-squared-errors for regression, etc.) and evaluation strategies (training-testing split, sequential vs randomized cross-validation, etc.). So, before you start applying algorithms, you need to gain a thorough understanding of the basic concepts involved in in the Data Modelling.

4. Possess Software Engineering skills

Whether you are a Data Scientist or a Machine Learning Engineer, you need to possess the typical Software Engineering skills and knowledge base. If you have a Software Engineering background, great! If you don’t, you need to learn about the best practices in Software Engineering, including system design, modularity, version control, code analysis, requirements analysis, testing, documentation, among other things. The following step would be to learn how these concepts function together in the development of system interfaces. Understanding the nitty-gritty of system design is essential to prevent the occurrence of bottlenecks in the process.

5. Learn how to apply ML Algorithms and Libraries

There are a host of libraries/packages and APIs that contain the standard implementations of ML algorithms such as Scikit-learn, Theano, Spark MLlib, H2O, TensorFlow etc. However, the secret to making the most out of them is to know how to apply them effectively on suitable models (neural nets, decision trees, nearest neighbour, support vector machine, etc.). Not just that, you must also be familiar with the learning procedures (linear regression, gradient descent, genetic algorithms, boosting, etc.) that fit the data at hand.

The best way to get familiar with ML algorithms, libraries, and how to apply them correctly is to take up online challenges in Data Science and Machine Learning.

6. Get familiar with Advanced Signal Processing techniques

Feature extraction is one of the core essences of Machine Learning. Depending upon the problem at hand, you have to perform feature extraction using appropriate advance signal processing algorithms like wavelets, shearlets, curvelets, contourlets, bandlets, etc. Simultaneously, you must also learn about the various analysis techniques such as Time-Frequency analysis, Fourier Analysis, Convolution, etc.

7. Never stop upskilling and learning

As you know, Machine Learning is still an evolving discipline, with time new ML concepts, algorithms, and technologies will develop. To keep pace with the changing times, you must continuously upskill and develop new skill sets. This would involve staying updated with the latest tech and Data Science trends, working with new tools and theories, reading scientific journals, staying active in various online communities, and much more. Long story short, you should always have the urge to learn new things.

Ads of upGrad blog

Popular AI and ML Blogs & Free Courses

To conclude

The applications of Machine Learning have already begun to intertwine in our lives in ways that we couldn’t imagine before. Healthcare, education, finance, business – you name it, Machine Learning is everywhere. As long as the world continues to churn data, Machine Learning will reign, and with time, help us find answers to the most complicated real-world scenarios. The change has begun – it’s time you brace yourself for the new future with Data Science and Machine Learning.

So, begin today and start acquiring these Machine Learning skills!

Prashant Kathuria is currently working as a Senior Data Scientist at upGrad. He describes himself as a data freak and others working with him will agree. Working in Data since more than 3 years in Product companies has taught him that data of today is gold of tomorrow. You will find him brainstoring about new things, or reading about upcoming technologies in his free time.
Get Free Consultation

Select Coursecaret down icon
Selectcaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Explore Free Courses

Suggested Blogs

Artificial Intelligence course fees
Artificial intelligence (AI) was one of the most used words in 2023, which emphasizes how important and widespread this technology has become. If you
Read More

by venkatesh Rajanala

29 Feb 2024

Artificial Intelligence in Banking 2024: Examples & Challenges
Introduction Millennials and their changing preferences have led to a wide-scale disruption of daily processes in many industries and a simultaneous g
Read More

by Pavan Vadapalli

27 Feb 2024

Top 9 Python Libraries for Machine Learning in 2024
Machine learning is the most algorithm-intense field in computer science. Gone are those days when people had to code all algorithms for machine learn
Read More

by upGrad

19 Feb 2024

Top 15 IoT Interview Questions & Answers 2024 – For Beginners & Experienced
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

19 Feb 2024

Data Preprocessing in Machine Learning: 7 Easy Steps To Follow
Summary: In this article, you will learn about data preprocessing in Machine Learning: 7 easy steps to follow. Acquire the dataset Import all the cr
Read More

by Kechit Goyal

18 Feb 2024

Artificial Intelligence Salary in India [For Beginners & Experienced] in 2024
Artificial Intelligence (AI) has been one of the hottest buzzwords in the tech sphere for quite some time now. As Data Science is advancing, both AI a
Read More

by upGrad

18 Feb 2024

24 Exciting IoT Project Ideas & Topics For Beginners 2024 [Latest]
Summary: In this article, you will learn the 24 Exciting IoT Project Ideas & Topics. Take a glimpse at the project ideas listed below. Smart Agr
Read More

by Kechit Goyal

18 Feb 2024

Natural Language Processing (NLP) Projects & Topics For Beginners [2023]
What are Natural Language Processing Projects? NLP project ideas advanced encompass various applications and research areas that leverage computation
Read More

by Pavan Vadapalli

17 Feb 2024

45+ Interesting Machine Learning Project Ideas For Beginners [2024]
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

16 Feb 2024

Schedule 1:1 free counsellingTalk to Career Expert
footer sticky close icon