- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Naive Bayes Explained: Function, Advantages & Disadvantages, Applications in 2023
Updated on 22 November, 2022
62.96K+ views
• 9 min read
Table of Contents
Naive Bayes is a machine learning algorithm we use to solve classification problems. It is based on the Bayes Theorem. It is one of the simplest yet powerful ML algorithms in use and finds applications in many industries.
Suppose you have to solve a classification problem and have created the features and generated the hypothesis, but your superiors want to see the model. You have numerous data points (lakhs of data points) and many variables to train the dataset. The best solution for this situation would be to use the Naive Bayes classifier, which is quite faster in comparison to other classification algorithms.
In this article, we’ll discuss this algorithm in detail and find out how it works. We’ll also discuss its advantages and disadvantages along with its real-world applications to understand how essential this algorithm is.
Join the Machine Learning Course online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
Let’s get started:
Naive Bayes Explained
Naive Bayes uses the Bayes’ Theorem and assumes that all predictors are independent. In other words, this classifier assumes that the presence of one particular feature in a class doesn’t affect the presence of another one.
Here’s an example: you’d consider fruit to be orange if it is round, orange, and is of around 3.5 inches in diameter. Now, even if these features require each other to exist, they all contribute independently to your assumption that this particular fruit is orange. That’s why this algorithm has ‘Naive’ in its name.
Building the Naive Bayes model is quite simple and helps you in working with vast datasets. Moreover, this equation is popular for beating many advanced classification techniques in terms of performance.
Here’s the equation for Naive Bayes:
P (c|x) = P(x|c) P(c) / P(x)
P(c|x) = P(x1 | c) x P(x2 | c) x … P(xn | c) x P(c)
Here, P (c|x) is the posterior probability according to the predictor (x) for the class(c). P(c) is the prior probability of the class, P(x) is the prior probability of the predictor, and P(x|c) is the probability of the predictor for the particular class(c).
Apart from considering the independence of every feature, Naive Bayes also assumes that they contribute equally. This is an important point to remember.
Must Read: Free nlp online course!
How does Naive Bayes Work?
To understand how Naive Bayes works, we should discuss an example.
Suppose we want to find stolen cars and have the following dataset:
Serial No. | Color | Type | Origin | Was it Stolen? |
1 | Red | Sports | Domestic | Yes |
2 | Red | Sports | Domestic | No |
3 | Red | Sports | Domestic | Yes |
4 | Yellow | Sports | Domestic | No |
5 | Yellow | Sports | Imported | Yes |
6 | Yellow | SUV | Imported | No |
7 | Yellow | SUV | Imported | Yes |
8 | Yellow | SUV | Domestic | No |
9 | Red | SUV | Imported | No |
10 | Red | Sports | Imported | Yes |
According to our dataset, we can understand that our algorithm makes the following assumptions:
- It assumes that every feature is independent. For example, the colour ‘Yellow’ of a car has nothing to do with its Origin or Type.
- It gives every feature the same level of importance. For example, knowing only the Color and Origin would predict the outcome correctly. That’s why every feature is equally important and contributes equally to the result.
Now, with our dataset, we have to classify if thieves steal a car according to its features. Each row has individual entries, and the columns represent the features of every car. In the first row, we have a stolen Red Sports Car with Domestic Origin. We’ll find out if thieves would steal a Red Domestic SUV or not (our dataset doesn’t have an entry for a Red Domestic SUV).
We can rewrite the Bayes Theorem for our example as:
P(y | X) = [P(X | y) P(y)P(X)]/P(X)
Here, y stands for the class variable (Was it Stolen?) to show if the thieves stole the car not according to the conditions. X stands for the features.
X = x1, x2, x3, …., xn)
Here, x1, x2,…, xn stand for the features. We can map them to be Type, Origin, and Color. Now, we’ll replace X and expand the chain rule to get the following:
P(y | x1, …, xn) = [P(x1 | y) P(x2 | y) … P(xn | y) P(y)]/[P(x1) P (x2) … P(xn)]
You can get the values for each by using the dataset and putting their values in the equation. The denominator will remain static for every entry in the dataset to remove it and inject proportionality.
P(y | x1, …, xn) ∝ P(y) i = 1nP(xi | y)
In our example, y only has two outcomes, yes or no.
y = argmaxyP(y) i = 1nP(xi | y)
We can create a Frequency Table to calculate the posterior probability P(y|x) for every feature. Then, we’ll mould the frequency tables to Likelihood Tables and use the Naive Bayesian equation to find every class’s posterior probability. The result of our prediction would be the class that has the highest posterior probability. Here are the Likelihood and Frequency Tables:
Frequency Table of Color:
Color | Was it Stolen (Yes) | Was it Stolen (No) |
Red | 3 | 2 |
Yellow | 2 | 3 |
Likelihood Table of Color:
Color | Was it Stolen [P(Yes)] | Was it Stolen [P(No)] |
Red | 3/5 | 2/5 |
Yellow | 2/5 | 3/5 |
Frequency Table of Type:
Type | Was it Stolen (Yes) | Was it Stolen (No) |
Sports | 4 | 2 |
SUV | 1 | 3 |
Likelihood Table of Type:
Type | Was it Stolen [P(Yes)] | Was it Stolen [P(No)] |
Sports | 4/5 | 2/5 |
SUV | 1/5 | 3/5 |
Frequency Table of Origin:
Origin | Was it Stolen (Yes) | Was it Stolen (No) |
Domestic | 2 | 3 |
Imported | 3 | 2 |
Likelihood Table of Origin:
Origin | Was it Stolen [P(Yes)] | Was it Stolen [P(No)] |
Domestic | 2/5 | 3/5 |
Imported | 3/5 | 2/5 |
Our problem has 3 predictors for X, so according to the equations we saw previously, the posterior probability P(Yes | X) would be as following:
P(Yes | X) = P(Red | Yes) * P(SUV | Yes) * P(Domestic | Yes) * P(Yes)
= ⅗ x ⅕ x ⅖ x 1
= 0.048
P(No | X) would be:
P(No | X) = P(Red | No) * P(SUV | No) * P(Domestic | No) * P(No)
= ⅖ x ⅗ x ⅗ x 1
= 0.144
So, as the posterior probability P(No | X) is higher than the posterior probability P(Yes | X), our Red Domestic SUV will have ‘No’ in the ‘Was it stolen?’ section.
Best Machine Learning and AI Courses Online
The example should have shown you how the Naive Bayes Classifier works. To get a better picture of Naive Bayes explained, we should now discuss its advantages and disadvantages:
Advantages and Disadvantages of Naive Bayes
Advantages
- This algorithm works quickly and can save a lot of time.
- Naive Bayes is suitable for solving multi-class prediction problems.
- If its assumption of the independence of features holds true, it can perform better than other models and requires much less training data.
- Naive Bayes is better suited for categorical input variables than numerical variables.
Disadvantages
- Naive Bayes assumes that all predictors (or features) are independent, rarely happening in real life. This limits the applicability of this algorithm in real-world use cases.
- This algorithm faces the ‘zero-frequency problem’ where it assigns zero probability to a categorical variable whose category in the test data set wasn’t available in the training dataset. It would be best if you used a smoothing technique to overcome this issue.
- Its estimations can be wrong in some cases, so you shouldn’t take its probability outputs very seriously.
Checkout: Machine Learning Models Explained
Applications of Naive Bayes Explained
Here are some areas where this algorithm finds applications:
Text Classification
Most of the time, Naive Bayes finds uses in-text classification due to its assumption of independence and high performance in solving multi-class problems. It enjoys a high rate of success than other algorithms due to its speed and efficiency.
In-demand Machine Learning Skills
Sentiment Analysis
One of the most prominent areas of machine learning is sentiment analysis, and this algorithm is quite useful there as well. Sentiment analysis focuses on identifying whether the customers think positively or negatively about a certain topic (product or service).
Recommender Systems
With the help of Collaborative Filtering, Naive Bayes Classifier builds a powerful recommender system to predict if a user would like a particular product (or resource) or not. Amazon, Netflix, and Flipkart are prominent companies that use recommender systems to suggest products to their customers.
Popular AI and ML Blogs & Free Courses
Learn More Machine Learning Algorithms
Naive Bayes is a simple and effective machine learning algorithm for solving multi-class problems. It finds uses in many prominent areas of machine learning applications such as sentiment analysis and text classification.
Check out Master of Science in Machine Learning & AI with IIIT Bangalore, the best engineering school in the country to create a program that teaches you not only machine learning but also the effective deployment of it using the cloud infrastructure. Our aim with this program is to open the doors of the most selective institute in the country and give learners access to amazing faculty & resources in order to master a skill that is in high & growing
Frequently Asked Questions (FAQs)
1. What is naïve bayes algorithm?
To handle categorization difficulties, we employ the Naive Bayes machine learning technique. The Bayes Theorem underpins it. It is one of the most basic yet powerful machine learning algorithms in use, with applications in a variety of industries. Let's say you're working on a classification problem and you've already established the features and hypothesis, but your boss wants to see the model. To train the dataset, you have a large number of data points (thousands of data points) and a large number of variables. The Naive Bayes classifier, which is much faster than other classification algorithms, would be the best option in this circumstance.
2. What are some advantages and disadvantages of naïve bayes?
For multi-class prediction issues, Naive Bayes is a good choice. If the premise of feature independence remains true, it can outperform other models while using far less training data. Categorical input variables are more suited to Naive Bayes than numerical input variables.
In Naive Bayes, all predictors (or traits) are assumed to be independent, which is rarely the case in real life. This limits the algorithm's usability in real-world scenarios. You shouldn't take its probability outputs seriously because its estimations can be off in some instances.
3. What are some real-world application of naïve bayes?
Because of its premise of autonomy and high performance in addressing multi-class problems, Naive Bayes is frequently used in-text classification. Sentiment analysis is one of the most popular applications of machine learning, and this technique can help with that as well. The goal of sentiment analysis is to determine whether customers have favorable or negative feelings about a particular issue (product or service). Naive Bayes Classifier uses Collaborative Filtering to create a sophisticated recommender system that can predict whether or not a user will enjoy a given product (or resource).
RELATED PROGRAMS