- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
What is Deep Learning: Definition, Scope & Career Opportunities
Updated on 29 November, 2022
5.46K+ views
• 7 min read
Table of Contents
Ever wonder how Amazon comes up with suggestions of what you should buy next? Or how Netflix recommends movies that you’re most likely to watch? Moreover, how do Siri, Alexa, or Cortana respond to your queries? Behind all these technologies we deal with daily are deep learning algorithms at work. A type of machine learning, deep learning and neural networks attempt to mimic the human brain and make accurate predictions.
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
This article will dive deep into the concept of deep learning and neural networks and walk you through the scope of deep learning as a career.
What is Deep Learning?
Deep learning is a machine learning technique that trains computers to learn by example, which instinctively comes to humans. It essentially involves a multi-layered artificial neural network (ANN) that simulates the neuron connections in the human brain. The multiple layers help refine and optimize the accuracy with which the ANNs make predictions.
One of the fastest-growing fields in machine learning, deep learning-driven digital technologies, in a way, has enabled the automation of predictive analytics. Computers learn to perform classifications directly from texts, images, or sound in deep learning through large labeled datasets and neural network architectures. Thus, deep learning and neural networks simplify the task of data scientists who need to collect, analyze, and interpret massive amounts of data for predictive modeling.
How Does Deep Learning Work?
Deep learning neural networks or ANNs imitate the human brain to accurately identify, classify, and define objects within the input dataset. Like the human brain is made of neurons, deep learning neural networks comprise layers of nodes, and nodes within each layer connect to adjacent layers.
While a human brain neuron receives impulses from thousands of other neurons, signals in ANNs travel between nodes of interconnected layers, assigning weights and biases to the input. In machine learning, a weight (w) controls the strength of the connection between two neurons and dictate’s the influence of the input on the output. On the other hand, a bias (b) serves as an additional input to the next layer and has the value 1. The bias ensures that the neuron activates even when all the inputs are zeros.
A heavier weighted node exerts more effect on the subsequent layer of nodes, with the final layer collating the weighted inputs to give an output. The input and output layers of an ANN are called visible layers. While the input layer is where the model takes in data for processing, the output layer is where the deep learning model makes the final prediction. Deep learning models typically contain as many as 150 hidden layers in their neural network.
Real-Life Examples of Deep Learning
Below are a few examples of deep learning and neural networks translating into practical, everyday applications and services:
- Language translations
- Chatbots and service bots
- Virtual assistants
- Facial recognitions
- Recommendation engines
- Image colorization
- Vision for driverless vehicles and drones
- Industrial automation
- Text generation
- Personalized medicine
Deep Learning Skills
Deep learning is a powerful machine learning technique. Therefore, building deep learning models requires advanced machine learning skills. Let’s look at some of the key skills you will need to master deep learning:
Applied Mathematics
Mathematical skills, including statistics, are essential to understanding how deep learning algorithms work. These mathematical skills include linear algebra, probability theory, statistics, calculus, algorithms, and optimization.
Data Engineering
Since deep learning involves a considerable amount of data, having fundamental data engineering skills is fundamental. Data engineering skills mainly include data pre-processing, data extraction, transformation, and loading (ETL), and knowledge of Oracle, MySQL, and NoSQL databases.
Programming
While many programming languages can be used in machine learning, some of the most popular ones include Python, Java, C++, R, and JavaScript. What’s more, these high-level programming languages come with libraries and packages that simplify your work further.
Machine Learning Algorithms
Knowledge of machine learning algorithms is a must if you want to master deep learning. Machine learning algorithms that come in handy include Naive Bayes, K-nearest Neighbor, Support Vector Machine, Linear Regression, Logistic regression, Random Forest, Decision Tree, K-means Clustering, and Hierarchical Clustering.
Deep Learning Algorithms
A crucial part of your deep learning skillset is deep learning algorithms. Some popular deep learning algorithms include Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Deep Belief Network (DBN), and Generative Adversarial Network (GAN).
Deep Learning Frameworks
Lastly, you need to learn various deep learning frameworks that help design, train, and validate deep neural networks. The most widely used deep learning frameworks are TensorFlow, PyTorch, Keras, ScikitLearn, Theano, DL4J, Sonnet, Gluon, and MXNet.
Natural Language Processing
NLTK, Gensim, Word2vec, Sentiment Analysis, and Summarization are some of the top natural language processing libraries and techniques used in machine learning.
Soft Skills
Apart from the technical skills discussed above, machine learning professionals must have relevant soft skills and behavioral skills, including:
- Domain knowledge
- Reasoning and problem-solving skills
- Communication skills
- Rapid prototyping
Scope of Deep Learning
The field of artificial intelligence and machine learning offers lucrative career avenues with life-long learning opportunities. According to Payscale, the average yearly salary of a machine learning engineer with deep learning skills is US$ 110,491. Moreover, with almost every industry and sector adopting AI-driven technologies to improve business processes and products, there is a concomitant rise in demand for skilled AI professionals.
Moreover, the global AI software market is forecasted to witness a staggering growth in the coming years, reaching about US$ 126 billion by 2025. The market includes many AI applications, including robotic process automation, machine learning, and natural language processing. Needless to say, deep learning skills will be highly valued among recruiters looking for the best talents in the AI field. Thus, the scope of machine learning and deep learning is pretty broad and promising, both in terms of opportunities and salary.
Popular AI and ML Blogs & Free Courses
Conclusion
Artificial intelligence (AI) and its subsets such as machine learning and deep learning have proved that computers can perform tasks that typically require human intelligence. From virtual assistants and chatbots to autonomous vehicles, AI-driven technologies have permeated almost every aspect of our lives. As algorithms evolve and learn, the list of real-world applications and use cases of machine learning and deep learning will continue to grow.
If you’re looking to enhance your machine learning skills and earn a certification, check out the Master of Science in Machine Learning & AI offered by upGrad. The 20-month online course will help you acquire the relevant skills to become a data scientist or AI professional.
Frequently Asked Questions (FAQs)
1. What is the difference between deep learning and machine learning?
Deep learning is a subset of machine learning. However, the two differ in the type of data they deal with and the learning methods employed. Machine learning works with structured, unlabeled data to make predictions. Even if it uses unstructured data, it is pre-processed to impart some structure and organization. On the other hand, deep learning eliminates most of the pre-processing. Instead, it ingests and processes unstructured data, and with automated feature extraction, deep learning algorithms eliminate dependence on humans. Moreover, deep learning mimics the human brain to learn by example, whereas machine learning is about computers performing tasks without explicit programming.
2. Why is deep learning deep?
The DEEP in deep learning comes from the multiple hidden layers in the artificial neural networks (ANNs) of deep learning models. Each layer comprises nodes that are interconnected with nodes in adjacent layers, and each node of the layers is assigned a weight that determines the strength of the output. Thus, computers use multiple layers of neural networks to learn from data; the more layers in the model, the DEEPER the learning.
3. What is NLP AI?
Natural Language Processing (NLP) is a branch of computer science and AI that trains computers to understand natural languages like text and speech. Thus, the goal of NLP is to build machines that understand and respond to voice or text data just the way humans do. NLP combines deep learning, machine learning, and statistical models with computational linguistics so that computers can process human language and the sentiment of the speaker or writer. Real-world applications of NLP include voice-controlled assistants like Alexa and Siri, autocorrect/autocomplete features, customer service chatbots, tools like Grammarly, etc.
Did you find this article helpful?
Get Free Consultation
By clicking "Submit" you Agree toupGrad's Terms & Conditions