Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconLinear Regression Vs. Logistic Regression: Difference Between Linear Regression & Logistic Regression

Linear Regression Vs. Logistic Regression: Difference Between Linear Regression & Logistic Regression

Last updated:
10th Sep, 2020
Read Time
7 Mins
share image icon
In this article
Chevron in toc
View All
Linear Regression Vs. Logistic Regression: Difference Between Linear Regression & Logistic Regression

The world of machine learning would not be complete without the presence of two of the simplest machine learning algorithms. Yes, both Linear Regression and Logistic Regression are the most straightforward machine learning algorithms you can implement. Before discussing any of the differences between linear and logistic regression, we must first understand the basics on which the foundation of both of these algorithms is laid.

Best Machine Learning and AI Courses Online

First up, both of these algorithms are supervised learning in nature. Meaning, the data that you will feed into both of these algorithms should be well labeled. Another critical thing to note is the use cases. Right off the bat, one glaring difference between these two algorithms is the use cases of both. Linear Regression is used whenever we would like to perform regression. Meaning, we use linear regression whenever we want to predict continuous numbers, like the house prices in a particular area. 

However, the use of logistic regression is done in classification problems. Meaning, if we want to predict whether a particular house is expensive or inexpensive (instead of the price), we use the algorithm of logistic regression. Yes, even though logistic regression has the word regression in its name, it is used for classification.

Ads of upGrad blog

In-demand Machine Learning Skills

There are more such exciting subtleties which you will find listed below. But before comparing linear regression vs. logistic regression head-on, let us first learn more about each of these algorithms.

Linear Regression

Linear regression is the easiest and simplest machine learning algorithm to both understand and deploy. It is a supervised learning algorithm, so if we want to predict the continuous values (or perform regression), we would have to serve this algorithm with a well-labeled dataset. This machine-learning algorithm is most straightforward because of its linear nature. To successfully predict future values, linear regression tries to a straight line through the data fed into the algorithm.

So, whenever any information is fed into a linear regression algorithm, it takes the data and takes the equation of a straight line, randomly selecting the slope and intercept until it finds the line of best fit. If the data that we feed into this algorithm only contains a single independent variable, then it is called simple linear regression.

On the other hand, if the data has multiple independent variables, then the regression becomes a multiple linear regression. The mathematical form of linear regression is simply that of a straight line, which is shown below.

y= a0+a1x+ c

Here, y is the dependent variable, the a0 and a1 is the coefficient which this algorithm is tasked to find, x is the dependent variable, and c is the intercept value of this straight line.

Logistic Regression

It is needless to say that logistic regression is one of the most straightforward yet very powerful classification machine learning algorithms under the umbrella of a supervised learning algorithm. This algorithm can be used for regression problems, but it is mostly used to solve classification problems instead. The output which we get from this algorithm is always between 0 and 1 due to which it becomes effortless to classify instances into classes by using a threshold classification value.

The word logistic in the name refers to the activation function, which is used in this regression. The activation function or the logistic function, in this case, is actually nothing but the sigmoid function. It is the property of this sigmoid function, which keeps the logistic regression’s value always between zero and one. The sigmoid function looks something like this:

Here, y is the output through the sigmoid function, and x is the independent variable. In the case of logistic regression, the variable x would actually be the entire linear regression equation. Hence, the equation for logistic regression can be developed, which is written below:

Here, the meaning of the variables is similar to the one in the logistic regression, x is the independent variable, and y is the dependent variable, b0, b1, b2, etc., are the coefficient which this algorithm determines. 

Difference between linear and logistic regression

Ads of upGrad blog

Listed below, you will find a comprehensive comparison of linear regression vs. logistic regression side by side:

It requires well-labeled data meaning it needs supervision, and it is used for regression. Thus, linear regression is a supervised regression algorithm. It also requires the data that is fed into it to be well labeled. However, this algorithm is used for classification instead of regression. So logistic regression is a supervised classification algorithm.
The prediction gained through the linear regression algorithm is usually a value that can be in the range of negative infinity to positive infinity. The prediction that is gained through the logistic regression is actually in the range of just zero to one. This feature allows for an easy classification with the help of a threshold value.
Linear regression requires no function of activation.Here we need a function of activation. In this case, that function is the sigmoid function. 
There is no threshold value in linear regression.In logistic regression, a threshold value is needed to determine the classes of each instance properly.
The dependent variable in the case of linear regression has to be continuous in nature. Meaning we cannot pass in the variable, which is categorical and expect continuous value in the prediction. The dependent variable in the case of logistic regression has to be categorical. Meaning it should have different categories (not more than two).
The goal of this algorithm is to find the line of best fit through the training data points. Thus, the resultant straight line, which we draw, should touch almost all the training points if the fit is neither over nor under.If we make any changes to the logistic regression curve’s coefficient, then the entire plot of it would change its shape. 
For predicting the values, the algorithm of linear regression makes a fundamental assumption. It assumes that the values which are passed into this algorithm follows the standard normal distribution or are distributed in accordance with the gaussian distribution.The algorithm of logistic regression also makes an assumption of the distribution of the data that is being passed into the sigmoid function. It assumes that the data follows the binomial distribution.

Popular AI and ML Blogs & Free Courses

Want to learn more?

If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.


Pavan Vadapalli

Blog Author
Director of Engineering @ upGrad. Motivated to leverage technology to solve problems. Seasoned leader for startups and fast moving orgs. Working on solving problems of scale and long term technology strategy.
Get Free Consultation

Select Coursecaret down icon
Selectcaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Frequently Asked Questions (FAQs)

1What are the cons of using logistic regression?

A logistic regression model anticipates a dependent data variable by examining the connection between one or more pre-existing independent variables. Logistic regression, which is commonly used for classification tasks, has numerous advantages, but it also has some drawbacks. When working with high-dimensional datasets, overfitting of the model may occur, resulting in inaccurate conclusions. Since data preparation is a time-consuming procedure when employing logistic regression, data maintenance becomes difficult as well. One of the major drawbacks of logistic regression is that it cannot deal with non-linear problems.

2What is meant by multinomial logistic regression?

Multinomial logistic regression is a binary logistic regression extension that can handle more than two dependent or outcome variables. It is similar to logistic regression, except that there are many possible outcomes rather than just one. It is a traditional supervised machine learning approach with multi-class classification capabilities. The multinomial logistic model includes various assumptions, one of which is that data is thought to be case-specific, meaning that each independent variable has a single value for each instance. The multinomial logistic model also posits that in any given scenario, the dependent variable cannot be precisely predicted from the independent variables.

3How can linear regression be used to solve real-life problems?

Linear regression is widely used in a variety of real-world situations and sectors. Businesses typically utilize linear regression to understand the relationship between advertising, spending, and profit. Medical researchers frequently employ linear regression to examine the association between medicine dose and patient blood pressure. Agricultural scientists frequently employ linear regression to assess the influence of fertilizer and water on crop yields. Thus, the uses of linear regression are varied in solving real-life problems.

Explore Free Courses

Suggested Blogs

Artificial Intelligence course fees
Artificial intelligence (AI) was one of the most used words in 2023, which emphasizes how important and widespread this technology has become. If you
Read More

by venkatesh Rajanala

29 Feb 2024

Artificial Intelligence in Banking 2024: Examples & Challenges
Introduction Millennials and their changing preferences have led to a wide-scale disruption of daily processes in many industries and a simultaneous g
Read More

by Pavan Vadapalli

27 Feb 2024

Top 9 Python Libraries for Machine Learning in 2024
Machine learning is the most algorithm-intense field in computer science. Gone are those days when people had to code all algorithms for machine learn
Read More

by upGrad

19 Feb 2024

Top 15 IoT Interview Questions & Answers 2024 – For Beginners & Experienced
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

19 Feb 2024

Data Preprocessing in Machine Learning: 7 Easy Steps To Follow
Summary: In this article, you will learn about data preprocessing in Machine Learning: 7 easy steps to follow. Acquire the dataset Import all the cr
Read More

by Kechit Goyal

18 Feb 2024

Artificial Intelligence Salary in India [For Beginners & Experienced] in 2024
Artificial Intelligence (AI) has been one of the hottest buzzwords in the tech sphere for quite some time now. As Data Science is advancing, both AI a
Read More

by upGrad

18 Feb 2024

24 Exciting IoT Project Ideas & Topics For Beginners 2024 [Latest]
Summary: In this article, you will learn the 24 Exciting IoT Project Ideas & Topics. Take a glimpse at the project ideas listed below. Smart Agr
Read More

by Kechit Goyal

18 Feb 2024

Natural Language Processing (NLP) Projects & Topics For Beginners [2023]
What are Natural Language Processing Projects? NLP project ideas advanced encompass various applications and research areas that leverage computation
Read More

by Pavan Vadapalli

17 Feb 2024

45+ Interesting Machine Learning Project Ideas For Beginners [2024]
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

16 Feb 2024

Schedule 1:1 free counsellingTalk to Career Expert
footer sticky close icon