- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Graph Convolutional Networks: List of Applications You Need To Know
Updated on 03 July, 2023
7.62K+ views
• 11 min read
Table of Contents
Convolutional Network is a type of Neural Network. Neural Networks are a special kind of deep learning model. Typically, machine learning or deep learning comprises rigorous and expensive algorithms due to its complicated task. Similarly, deep learning models on graphs are even more complicated. Graph Convolutional Networks are primarily used in the purpose of image classification. Learn more about convolutional neural network.
Top Machine Learning and AI Courses Online
Through the last decade, the application of data science has increased enormously. In this data-rich world, the learning model approach brought great results and accurate predictions. Graphs are useful for many information systems.
From biological protein interactions to internet connectivity and WorldWideWeb, graphs represent all these systems. Also, implementing neural networks through graphical structure lets the computer understand the properties of an image. This model is one of the most advanced real-world applications of the graph. Let us discuss these algorithms in detail:
Trending Machine Learning Skills
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
How Neural Networks are Built
Neural Networks are one of the most advanced techniques of data science and deep learning. Neural Networks are useful in many applications, from Stock Market prediction to image classification, speech or character recognition and even in sequence analysis.
The first concept of the Neural Network came from biological perspectives. Scientists conducted experiments in which nerves for vision are connected with the hearing centres of the brain. Eventually, the organism learnt to see through the hearing centre of the brain too. Even further experiments proved that every centre of the brain could perform every action.
Approaches started to begin to mimic the human brain informing computer algorithms. So, similarly, computer scientists also thought that there should be a single algorithm which is capable of solving all computer brain learning problems. That is how the neural network came to birth.
A neural network consists of multiple layers of neurons. Each neuron is typically a graph node. Each neuron of each layer is connected with all the neurons of the next layer through a weighted edge—the weights of the edge act as a coefficient of the layer value calculation.
Through backpropagation, coefficients change to fit the model with sample training examples. Ultimately, a single neuron from the last layer gives the output. In the following image, the structure of a neural network is explained.
Read: Using Convolutional Neural Network For Image Classification
Graph Convolutional Networks
Convolutional Networks are 3-dimensional neural networks. Most practical uses of Convolutional Neural Networks include image classification and recognition, natural language processing and speech recognition. These models are usually more complex than the usual 2-dimensional neural network models.
In this architecture, layers of different neurons are assembled. The parameter of dimensions is variable in different layers to make the model recognise parameters. For instance, images are two dimensional, and, in the meantime, the colour of each point also play a crucial role. Hence, three different parameters emerge. To deal with such complexities, Conv Nets play a significant role.
These many 3d matrices of different dimensions work at multiple levels of the neural network. Eventually, the ‘z’ dimension fit the output parameter of the network. The conveyance of information from one level to another can take place through a variety of different algorithms.
For instance, FC (Fully Connected), Pooling and ReLU are some crucial algorithms regarding this.
Generally, the node values of the neural network are denoted with, where ‘l’ signifies the layer number. So, a0 is the input matrix.
a0=X
On the other hand, the last layer node defines the output. Say, there are ‘L’ layers. Therefore aL denotes the output of the neural network.
aL=Y
The above image depicts a convolutional neural network in the implementation of image classification. The parameters are set for a dog, cat, bat and bird.
The node value of a particular internal layer is calculated through previous layer values.
al+1=f(al,θ)
Here, is the adjacency matrix and, f is the defining function. Every graph convolutional network layer can be written using this expression. In this way, a graph convolutional neural network typically works.
Notations and Preliminaries
The basis for comprehending GCN deep learning is graphs and graph signals. Graph signals refer to node-specific attributes, whereas graphs describe things (nodes) and the relationships between them (edges). We can understand the core ideas behind GCNs and their applications by fully comprehending these key ideas.
Graph Fourier Transform
The Graph Fourier Transform provides a mathematical foundation for analyzing graph signals in the frequency domain. This transform allows us to extract useful information from graph-structured data, aiding efficient graph filtering and analysis. It is similar to the Fourier Transform in signal processing.
Graph Filtering
Thanks to graph filtering techniques, we can process graph signals, extract important characteristics, and carry out operations like smoothing, denoising, and improvement. Using graph filtering, GCNs can efficiently extract and represent information from graph-structured data.
Spectral Graph Convolutional Networks
Convolution operations on graph signals are carried out by Spectral Graph Convolutional Neural Networks using the Graph Fourier Transform. These networks may efficiently aggregate data from nearby nodes, enabling potent representation learning on graphs by taking advantage of the eigenvalues and eigenvectors of the graph Laplacian.
Spatial Graph Convolutional Networks
Convolutional networks investigate Spatial Graph Alternative methods for performing graph convolutions. Three broad categories can be used to group them:
Classic CNN-based Spatial GCNs: Architecture of convolutional neural network modification to operate on graphs is one strategy used in spatial GCNs. This entails specifying convolutional operations on graph nodes and edges like CNNs do for standard grid-like architectures. These networks may identify spatial patterns and characteristics in graph data by utilizing local neighbourhood knowledge and shared weights.
Propagation-based Spatial GCNs: The concept of message passing or propagation is the foundation of another strategy in spatial GCNs. This method uses the graph’s connectedness to spread information across nodes iteratively. To update its representation, each node gathers data from its neighbours. This propagation mechanism allows The network to capture spatial dependencies and learn expressive node representations.
Related General Graph Neural Networks: A larger family of Graph Neural Networks (GNNs) that can handle graph-structured data includes spatial GCNs. While Graph Attention Networks (GATs) or Graph Isomorphism Networks (GINs) may emphasize different characteristics, such as attention processes or graph isomorphism invariance, other GNN versions, such as Spatial GCNs, concentrate on spatial information.
Applications of Graph Convolutional Networks
Applications of Graph Convolutional Networks (GCNs) can be categorized into computer vision and natural language processing domains. Here are the key points about their applications:
Computer Vision Applications
Images: Semantic segmentation, object detection, and image categorization are just a few of the image tasks for which GCNs have been effectively applied. By describing images as graphs, where pixels or image regions are nodes and their spatial relationships are edges, GCNs can capture spatial dependencies and contextual information. This enhances the comprehension and processing of images.
GCNs can be utilised for a variety of tasks, such as action recognition, video summaries, and video segmentation. By representing films as spatiotemporal networks, where frames or video segments are nodes and their temporal connections are edges, GCNs may effectively characterise motion dynamics and capture long-range interdependence. This enhances the understanding and interpretation of video.
GCNs are helpful for point clouds, which are representations of 3D data acquired from sensors like LiDAR. With points acting as nodes and edges denoting their spatial interconnections, point clouds can be processed by GCNs as graphs. Point cloud segmentation, object detection, and categorization problems enable applications like autonomous driving, robotics, and 3D scene interpretation.
GCNs can manage mesh data, which represents complex 3D surfaces with vertices, edges, and faces. Using the connection data present in meshes, GCNs may finish meshes and carry out operations such as shape classification, shape generation, and mesh completion. These skills have been applied to computer-aided design, virtual reality, and computer graphics.
- Graph Convolutional Networks generate predictions over physical systems, such as graphs, their interactive approach and applications. GCN also provides accurate information about the properties of real-world entities and physical systems (dynamics of the collision, objects trajectories).
- GCNs are used to perform image differentiation problems. The model it follows is known as ‘Zero-Shot Learning’. The main motive of this model is to identify an unknown labelled image and group it into known ones. They also gather semantic information of these labels and categorise them.
- GCNs can take a certain length of molecular fingerprints as input and generate predicted molecular structures. MolGAN is one kind of Graph Convolutional network which helps to create new molecular structures with various features in it. In this way, it allows scientists to invent modern molecular structures day by day.
- GCN is applicable for solving various problems related to research operations and combinatorial optimisation applications. Graph Convolutional Networks play a pivotal role in solving salesman problems, quadratic assignment problems, and many more. With the help of the input graph, it can outclass traditional complex algorithms.
Graph Convolutional Networks for Text Classification
Graph Convolutional Networks are effective for text classification. They present text data as a graph and capture local and global dependencies. While the nodes represent textual elements, the edges represent relationships. These networks employ message passing to collect information from neighboring nodes and capture semantic relationships. They are better than traditional methods because they capture context and achieve accurate classification in sentiment analysis, document categorization, etc.
Karate Club of Zachary
Another significant application of Graph Convolutional Networks is to solve community prediction problems, such as Karate Club of Zachary. This problem is based on the dispute between the administrator and the instructor of the club.
We have to figure out which side every member of the karate club would select. This problem gets resolved by using semi-supervised learning techniques. By using just two labelled nodes, Tobias Jepsen was able to fix the problem and reach near-perfect accuracy in terms of predicting those two communities.
Also Read: Neural Network Project Ideas
Now let’s take a look at the following images and, you would be able to get some insights about the Karate club problem and its proper calculations using Graph Convolutional Networks.
Popular AI and ML Blogs & Free Courses
Wrapping Up
By reading this article, you would be able to understand what Graph Convolutional Networks are, how Neural Networks are built, a brief idea of GCN and how it works, and various crucial aspects and applications of GCN including Zachary Karate Club problem.
If you want to know more about GCN and its features and benefits, do register at upGrad Education Pvt. Ltd. And IIITB’s Post Graduate and Diploma course on Machine Learning and Artificial Intelligence. This course on Machine Learning and AI is designed for students and working professionals.
The course provides a collection of case studies & assignments, industry mentorship sessions, IIIT Bangalore Alumni status, job placement assistance with top companies, and most importantly, a rich learning experience.
Frequently Asked Questions (FAQs)
1. What are the limitations of using neural networks?
The most significant drawback of employing neural networks to solve a problem is that the outcome is not properly explained, which might be difficult for many users. When compared to other machine learning techniques, neural networks require a lot more data to function well. They cost more to compute than any other traditional machine learning algorithm. From the ground up, training highly deep neural networks can take many weeks.
2. Which CNN model is considered to be the most optimum for image classification?
For image classification, the use of VGG-16, which stands for Very Deep Convolutional Networks for Large-Scale Image Recognition, is preferred. Outside of ImageNet, VGG, which was built as a deep CNN, outperforms baselines on a broad range of tasks and datasets. The model's unique characteristic is that rather than focusing on adding a huge number of hyperparameters, more emphasis was made on including superior convolution layers as it was being developed. It contains a total of 16 layers, 5 blocks, and a maximum pooling layer for each block, making it a huge network.
3. Why is it hard to perform CNNs on graphs?
It's difficult to execute CNNs on graphs because of their arbitrary size. Furthermore, there is no spatial locality in the graph due to its complicated topology, which is another reason why CNNs aren't employed in graphs. On the graph, GCNs are used for semi-supervised learning. The GCN's fundamental principle is to take a weighted average of all the node attributes of all its neighbors (including itself), with lower-degree nodes receiving higher weights. The generated feature vectors are then fed into a neural network for training.
RELATED PROGRAMS