Blog_Banner_Asset
    Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconSupervised vs Unsupervised Learning: Difference Between Supervised and Unsupervised Learning

Supervised vs Unsupervised Learning: Difference Between Supervised and Unsupervised Learning

Last updated:
12th Mar, 2023
Views
Read Time
10 Mins
share image icon
In this article
Chevron in toc
View All
Supervised vs Unsupervised Learning: Difference Between Supervised and Unsupervised Learning

Introduction

Machine Learning is broadly classified into three types, namely Supervised Learning, Unsupervised Learning, and Reinforcement Learning. Reinforcement learning is still new and under rapid development, so let’s just ignore that in this article and deep dive into Supervised and Unsupervised Learning.

Top Machine Learning and AI Courses Online

Before moving into the actual definitions and usages of these two types of learning, let us first get familiar with Machine Learning. Machine learning is an application of artificial intelligence that provides systems with the ability to automatically learn and improve from experience without being explicitly programmed, and this is just the textbook definition of Machine Learning, as this article is mainly written for the newbies of Data Science and Artificial Intelligence field let me make this more clear and interesting for you so that you can understand and interpret it better.

Let us consider a baby as our machine and we need to help the baby learn the different numbers in our number system. In order to help the baby learn we need to show the baby a different number and tell what each number is.

Ads of upGrad blog

Read: Machine Learning Project Ideas

Doing this part repeatedly helps the baby learn and memorize the numbers. This is nothing but the ability to automatically learn and improve from experience without being explicitly programmed i.e. Machine Learning.

Trending Machine Learning Skills

Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

 

1. Supervised Learning

Let us start again with the classic textbook definition of Supervised Learning and make ourselves familiar with the baby example that we earlier took. Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs. It infers a function from labeled training data consisting of a set of training examples.

I hate the definitions that are written in any textbook as they are so formal to understand, rather I would prefer a friend to explain the definition in his own thoughts. In the long run whenever I try to recollect a definition, eventually the explanation given by a friend with an example pops up and makes my life easier. So, in this article let me be that friend to you.

Let us again take the baby example we considered earlier, in this case, we need to make the baby learn and identify the different fruits that we have. Let us consider Apple and Orange as our two fruits, and we start by showing these two pictures to the baby. We also tell the baby which picture is which fruit.

Looking at those pictures, the baby learns that the fruit will be round and red colour fruit is Apple, and orange colour fruit is Orange. Now let us show the baby a new picture of an Orange and ask him to find out whether the picture is Apple or Orange.

The baby predicts that the fruit is Orange. The baby correctly predicts the fruit as Orange because we have labelled the two fruits Apple and Orange into two categories and have asked the baby to learn what fruit is what. This is how Supervised Machine Learning works if we replace a machine with a baby.

Supervised Machine Learning is further classified into two types of problems known as Classification and Regression.

2. Classification

From the name itself, we can get to know that this is a Machine Learning problem where we need to classify the given data into two or more classes. The above example that we have taken is a Classification problem as we need to classify the given pictures into either an Apple or Orange class.

When we have only two classes to classify our data, then it is called Binary Classification. But in real-world data, we tend to have more than one class and it is called Multi-Class Classification. These types of learning are used by the majority to identify spam emails, classify customers, check whether a customer Churns from the operator, and many more use cases.

Industry applications of classification

Some of the real-life applications of classification are –

  1. Image classification
  2. Fraud detection
  3. Speech recognition 
  4. Spam filtering
  5. Document classification
  6. Facial recognition
  7. Medical diagnostic tests
  8. Malware classification
  9. Product categorisation
  10. Customer behaviour prediction

Types of Classification Tasks 

Some of the classification tasks in machine learning are mentioned below-

  • Predictive Modelling

Classification is a problem of predictive modelling where the class label stands to be in anticipation.

  • Binary classification 

As the word binary suggests, in classification binary is a type of problem that has only two possible outcomes. For example, (yes or no), (true or false), (spam or not spam), and so on.

  • Multi-class classification

Opposed to binary classification, multi-class classification is a type of problem that can have more than two possible outcomes. In this case, each problem is assigned to only one label. For example, classifying images, classifying species, and so on.

  • Multi-label classification

It is a type of problem that may have more than one assigned class label to the data. The model would have multiple outcomes in this scenario. For example, an image can have multiple objects.

  • Imbalanced classification

In the presence of an unequal distribution of data, an imbalance is created. Imbalance classification refers to the classification method where the data distribution is skewed or biased.

Also Read: Career in Machine Learning

3. Regression

Regression on the other hand, deals with continuous data, such as predicting your salary based on experience. In this case, we do not need to put the data into any classes but need to predict the continuous value based on the continuous data we have.

These types of problems have continuous columns in their data set, whereas Classification tends to have categorical columns. These types of learning are used to predict the financial growth in the next quarter for any company, student marks based on his previous marks, and many more.

Industry applications of Regression

  1. Forecasting 
  2. Comparing with competition
  3. Capital Asset Pricing Model (CAPM)
  4. Problem identification
  5. Better decision making

Types of regression analysis

Some of the different types of regression analysis are mentioned below –

  • Simple linear regression

It is a relationship between a dependent variable and an independent variable. The simple linear regression model reveals a liner or a slanted straight line. 

The model has an expression, as depicted below;

Y= a+bX+ϵ

Where, 

  • Y= dependent variable
  • X= independent variable 
  • a= intercept
  • b= slope
  • ϵ= residual 
  • Multiple linear regression

It is a statistical process that helps in using multiple explanatory factors to predict the outcome. Multiple linear regression is a method to represent a relationship between dependent and independent variables.

The mathematical representation for MLR is;

y=ß0+ ß1 x1+ …………..ßn xn + ϵ

Where,

  • y = the dependent variable’s predicted value
  • B0 = the y-intercept
  • B1X1= B1 is the coefficient for regression of the first independent variable X1 
  • … = Repeat for as many independent variables as you’re testing.
  • BnXn = the last independent variable’s regression coefficient
  • ϵ = model error 
  • Non-linear regression

Data are fitted to a model and then numerically displayed. The non-linear regression connects two variables (X and Y) in a curved (non-linear) shape.

The model aims to minimise the sum of squares as the sum of squares is a statistic which helps to track how much Y observations differ from the non-linear function which was used to anticipate Y.

4. Unsupervised Learning

Unsupervised learning is a type of machine learning that looks for previously undetected patterns in a data set with no pre-existing labels and with a minimum of human supervision.

In contrast to supervised learning which usually makes use of human-labeled data, unsupervised learning, also known as self-organization, allows for the modeling of probability densities over inputs. Let us consider the baby example to understand Unsupervised Machine Learning better.

Let us use a group of cats’ and dogs’ pictures as input in this example, in earlier examples the baby knows that the pictures are of Apple and Orange as we have labelled and categorized them.

In this case, the baby doesn’t know anything and hence cannot categorize which one is a cat and which one is a dog. But can tell that few of the pictures look similar when compared to the other few. In this case, we cannot label the data, but we can still find patterns in the data. This is how Unsupervised Machine Learning works.

Applications of unsupervised learning

Some of the real-life application of unsupervised learning is-

  1. Customer segmentation 
  2. Understanding of different customer groups
  3. Clustering DNA patterns 
  4. Anomaly detection 
  5. Recommender systems 

5. Clustering

The above-taken example clearly describes the Clustering problem, and we need to cluster our dataset based on the patterns that we find in our data. Clustering is a very important Machine Learning problem, and many companies tend to use this technique to find valuable patterns and insights from their data.

Popular AI and ML Blogs & Free Courses

Examples of clustering

The supervised and unsupervised learning examples differ. The industry examples for unsupervised learning are mentioned below-

  • Anomaly detection

Any type of outliers can be detected with the help of clustering. Organisations with invested efforts in transportation and logistics may use anomaly detection to identify the logistical obstacles.

  • Customer and market segmentation 

Clustering can help the users to group people having similar traits and create customer personas. This yields results in  effective targeting and marketing.

Types of clustering

There are various types of clustering which can be used in different ways-

  • Exclusive clustering- One piece of data belongs to only one cluster.
  • Overlapping clustering- The data items can be a member of more than one cluster.
  • Hierarchical clustering- Helps to create a hierarchy of the cluster items.

Clustering Algorithms

There are various clustering algorithms that are at play- 

  • K-means

It is used for exclusive clustering. It helps in putting the data into the predefined numbers or clusters known as K. Items get assigned to the nearest cluster centre called centroids. 

  • Fuzzy K- means

It is an extended part of the K- means algorithm. Fuzzy K- means denotes that the data points can belong to more than one cluster with a certain level of closeness with one another.

  • Gaussian Mixture Models (GMM)
Ads of upGrad blog

It is used in probabilistic clustering because of the unknown mean or variance.  The model assumes that there is a certain number of Gaussian distributions. The algorithm helps to decide which cluster the data belongs to.

So these were the major difference between supervised and unsupervised learning. Now let’s summarise the differences in the form of a table;

Supervised vs Unsupervised learning
PropertiesSupervisedUnsupervised
Input dataLabelledUnlabelled
Usage timeThe users know what they are looking for in the dataThe users do not know what they are looking for in the data
ApplicabilityClassification and regression problemsClustering and association problems
Result in accuracyAccurate resultsLess accurate results
Algorithms
  • Super vector machines
  • Decision trees
  • Naive Bayes
  • K means
  • Gaussian Mixture Models
  • Principal Component Analysis
Industry applications
  • Spam filters
  • Demand forecasting
  • Image recognition
  • Recommender systems
  • Anomaly detection
  • Customer segmentation

Conclusion

In this article, we got to know about the different types of Machine Learning, got to understand those taking an easy-to-understand example, investigated the further divisions of each learning. This article covers only the basics of Machine Learning problems, each type of problem has different types of Machine Learning Algorithms.         

If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.

Profile

Pavan Vadapalli

Blog Author
Director of Engineering @ upGrad. Motivated to leverage technology to solve problems. Seasoned leader for startups and fast moving orgs. Working on solving problems of scale and long term technology strategy.
Get Free Consultation

Selectcaret down icon
Select Area of interestcaret down icon
Select Work Experiencecaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Frequently Asked Questions (FAQs)

1What is an example of unsupervised learning?

The examples of unsupervised learning are mentioned below - K means, KNN, Anomaly detection, Hierarchical clustering, Apriori algorithm, and Neural networks.

2What are the two types of supervised learning?

Some of the types of supervised learning are Regression, Naive Bayes, Classification, and Random forest

3What are the two main types of unsupervised learning?

The two main types of unsupervised learning are Clustering - It helps in grouping the unlabelled data based on their differences and similarities. Association rules - It helps to find a relationship between the points in the dataset.

4What is an example of supervised learning?

Some examples of supervised learning are Prediction of house prices, Classification between two different items like cats and dogs, and Weather forecasting

Explore Free Courses

Suggested Blogs

Top 5 Natural Language Processing (NLP) Projects & Topics For Beginners [2024]
109401
What are Natural Language Processing Projects? NLP project ideas advanced encompass various applications and research areas that leverage computation
Read More

by Pavan Vadapalli

30 May 2024

Top 8 Exciting AWS Projects & Ideas For Beginners [2024]
99229
AWS Projects & Topics Looking for AWS project ideas? Then you’ve come to the right place because, in this article, we’ve shared multiple AWS proj
Read More

by Pavan Vadapalli

30 May 2024

Bagging vs Boosting in Machine Learning: Difference Between Bagging and Boosting
91436
Owing to the proliferation of Machine learning applications and an increase in computing power, data scientists have inherently implemented algorithms
Read More

by Pavan Vadapalli

25 May 2024

45+ Best Machine Learning Project Ideas For Beginners [2024]
331390
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

21 May 2024

Top 9 Python Libraries for Machine Learning in 2024
76259
Machine learning is the most algorithm-intense field in computer science. Gone are those days when people had to code all algorithms for machine learn
Read More

by upGrad

19 May 2024

Top 15 IoT Interview Questions & Answers 2024 – For Beginners & Experienced
65225
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

19 May 2024

40 Best IoT Project Ideas & Topics For Beginners 2024 [Latest]
770189
In this article, you will learn the 40Exciting IoT Project Ideas & Topics. Take a glimpse at the project ideas listed below. Best Simple IoT Proje
Read More

by Kechit Goyal

19 May 2024

Top 22 Artificial Intelligence Project Ideas & Topics for Beginners [2024]
423245
In this article, you will learn the 22 AI project ideas & Topics. Take a glimpse below. Best AI Project Ideas & Topics Predict Housing Price
Read More

by Pavan Vadapalli

18 May 2024

Image Segmentation Techniques [Step By Step Implementation]
64620
What do you see first when you look at your selfie? Your face, right? You can spot your face because your brain is capable of identifying your face an
Read More

by Pavan Vadapalli

16 May 2024

Schedule 1:1 free counsellingTalk to Career Expert
icon
footer sticky close icon