A Comprehensive Guide to Types of Graphs in Data Structures
Updated on Jun 26, 2025 | 14 min read | 9.17K+ views
Share:
For working professionals
For fresh graduates
More
Updated on Jun 26, 2025 | 14 min read | 9.17K+ views
Share:
Table of Contents
Did you know? Graphs and trees questions constitute about 39% of coding interview questions at Google, making them the most frequent topic, ahead of arrays/strings (26%) and dynamic programming (12%). This indicates that more than one-third of Google's coding questions involve graphs or trees, highlighting their critical importance. |
Graphs in data structure are non-linear data models used to represent relationships between connected entities through nodes and edges. Each type of graph in data structure, such as directed, undirected, weighted, or cyclic, serves a unique purpose in algorithm design and problem-solving.
Understanding the different types of graphs in data structures is essential for modeling connections between data points in real-world applications like navigation, social media, and networks.
In this blog, we explain the most important types of graphs in data structure with clear examples and diagrams, their applications, and advantages to help you build a solid foundation.
Looking to deepen your data structures? Explore upGrad’s Software Development programs with hands-on projects and expert mentorship to help you master core topics like graphs, trees, and algorithms. Enroll today.
Graphs in data structure represent relationships between objects using vertices and edges. They play a crucial role in computer science, enabling efficient modeling of networks, dependencies, and connections. These structures are also widely used in data science and statistics for tasks such as social network analysis, recommendation systems, and correlation mapping.
Each graph type is suited for specific problem-solving scenarios, from undirected social graphs to weighted navigation systems.
This section breaks down all types of graphs in data structures with simple definitions and examples, helping beginners and advanced learners understand their structure, behavior, and applications.
Want to master core computer science concepts like types of graphs in data structures, trees, and algorithms? The following guide offers a beginner-friendly overview of graph types and prepares you for real-world technical interviews and software projects.
Here’s a clear breakdown of the different types of graphs in data structure and how each one works.
Graph Type |
Description |
Example Use Case |
Null Graph | A graph with no edges between any vertices | Modeling isolated data points |
Trivial Graph | A graph with only a single vertex, the simplest possible graph | Representing a single-node system |
Undirected Graph | Edges have no direction, representing mutual relationships | Facebook friend connections |
Directed Graph | Edges have specific directions from one vertex to another | Twitter follower relationships |
Connected Graph | Every node is reachable from any other node | A LAN network where all computers are connected |
Disconnected Graph | At least one node cannot be reached from some other nodes | A poorly connected social network |
Regular Graph | Every vertex has the same degree or number of connections | Balanced peer-to-peer network |
Complete Graph | Every node is connected to every other node | An efficient telecommunication network |
Cycle Graph | A graph that forms a single cycle, with each vertex having at least degree two | Circular train routes |
Cyclic Graph | A graph that contains at least one cycle | Deadlock detection in operating systems |
Directed Acyclic Graph | A directed graph with no cycles | Task scheduling and version control systems |
Bipartite Graph | Vertices are divided into two sets with no internal connections | Job assignment problems between employees and tasks |
Weighted Graph | Edges carry weights representing cost, distance, or time | Navigation systems like Google Maps |
Multigraph | A graph that allows multiple edges between the same pair of vertices | Modeling parallel roads or multiple flights between cities |
Sparse Graph | A graph where the number of edges is much less than the maximum possible | Modeling large-scale but loosely connected social networks |
This table gives a quick snapshot of the most common types of graphs in data structures, helping you decide which model best fits your use case.
Also Read: Computer Networking Basics: Key Concepts, Types, and Benefits Explained
Let’s explore each of the types of graphs in data structures, starting from the simplest to the more complex forms you’ll encounter in development.
A null graph is a graph that consists only of vertices without any edges connecting them. When you use a null graph in your application, you work with a structure where elements exist independently without any interaction or connection. This type of graph is often used in the initial modeling stages when no relationships have been established or when analyzing isolated entities.
Use Case:
Suppose you're designing a social networking platform and have just fetched a list of newly registered users. At this stage, no one has connected or interacted with anyone else. This is best represented as a null graph. It allows you to account for the users while deferring the connections until they occur naturally in the system.
Also Read: 10+ Free Data Structures and Algorithms Online Courses with Certificate 2025
A trivial graph contains only a single vertex and no edges. While it may seem insignificant, it is essential in theoretical computer science and graph theory. You might use it to represent a unit or entity operating entirely independently, especially in base-case scenarios for recursive algorithms or as a seed in network expansion simulations.
Use Case:
Imagine monitoring a lone weather sensor deployed in a remote area. It doesn’t connect to any other device and functions autonomously. Modeling such a setup as a trivial graph simplifies system design and testing for edge cases.
Also Read: Recursion in Data Structures: Types, Algorithms, and Applications
An undirected graph contains edges with no direction; the connection between any two vertices is mutual. If one vertex connects to another, the relationship is inherently bi-directional. These graphs are ideal for inherently reciprocal relationships and don’t require directionality.
Use Case Example:
You can use undirected graphs to model friend relationships in social media platforms like Facebook. If Aarav is friends with Priya, then Priya is automatically friends with Aarav. Another everyday use is in undirected road networks in India, such as local city roads, where vehicles can travel in both directions between neighborhoods like Connaught Place and Karol Bagh in Delhi.
In a directed graph, each edge has a direction, indicating a one-way relationship between two vertices. This makes it suitable for representing scenarios where direction matters, such as flows, hierarchies, or dependencies. Unlike undirected graphs, A -> B does not imply B -> A.
Use Case:
Twitter is a classic case where directed graphs are applicable. If you follow someone, it doesn’t mean they follow you back. Directed graphs are also widely used in modeling workflows, task scheduling, and web page linking structures, where navigation flows in a particular direction.
A connected graph ensures that every node is reachable from any other node. This is critical when you're designing systems that require total accessibility, as it guarantees that there’s a path from one point to any other.
Use Case:
In network topology design, a connected graph ensures that every device can communicate with the others. This is important for local area networks (LANs) where uptime and uninterrupted connectivity between servers and clients are essential. This is one of the most practical types of graphs in data structures, especially when ensuring full system communication is required.
A disconnected graph contains at least one vertex that is not reachable from another vertex. You use this type of graph when some elements of the system exist in silos or isolated groups that don't yet have any relationship.
Use Case:
DAGs are among the most widely used types of graphs in data structures in compiler design, task planning, and blockchain-based data systems. Suppose you're analyzing a database of users from different regions, and some areas have not yet established communication with others. In cybersecurity, disconnected graphs may reveal gaps in communication between nodes, which could indicate security blind spots.
Confused by blockchain buzzwords? upGrad’s Blockchain Technology Course simplifies the basics of Bitcoin, blockchain networks, and real-world use cases. Learn at your pace and earn a certification to stand out in tech.
Also Read: How To Become A Blockchain Developer – A Beginners Guide
A regular graph is one where every vertex has the same number of connections or degree. If each vertex has k edges, it is called a k-regular graph. Regular graphs bring balance and uniformity, which are particularly useful in load-balancing systems.
Use Case:
In a distributed computing network, a regular graph ensures that each server or node handles the same amount of traffic, leading to efficient resource utilization and reduced chances of system overload.
In a complete graph, every node is directly connected to every other node. This is the most densely connected form of a graph and represents the ideal form of communication in which all components are aware of and can communicate with each other.
Use Case:
Use a complete graph when designing a small teleconferencing system where every participant must have a direct line of communication with every other participant. It is also helpful in fully connected neural networks in machine learning.
A cycle graph is one in which the vertices form a closed loop. Each node is connected to exactly two other nodes, creating a continuous circle. This structure is often used when the order of access or traversal matters.
Use Case:
Cycle graphs effectively model round-robin tournament schedules or circular train routes where stations are visited in a loop without repetition.
A cyclic graph is any graph that contains at least one cycle, an edge path that starts and ends at the same vertex. You should use a cyclic graph when dealing with systems that have feedback loops or potential infinite recursions.
Use Case:
Cyclic graphs are helpful in operating systems to detect deadlocks. This structure can model and analyze a circular wait situation, where resources are requested in a cycle.
A directed acyclic graph, or DAG, is a directed graph with no cycles. This type of graph is significant in cases where dependencies must be resolved in a particular order, without falling into circular logic.
Use Case:
You’ll use DAGs in version control systems like Git, where commits follow a directed and non-repeating path. DAGs are also used in task scheduling systems, such as building dependency graphs in compilers or workflow engines.
A bipartite graph divides the vertex set into two groups, and edges are only allowed between vertices of different groups. No two vertices within the same group are connected. This model is useful when two distinct entities must be matched.
Use Case:
Use a bipartite graph when designing a job assignment algorithm, where you have a set of workers and a set of tasks, and you need to pair them based on suitability or availability. They’re also widely used in recommendation systems and matchmaking engines.
A weighted graph includes weights on its edges, representing cost, distance, or time. This allows you to build intelligent algorithms to find optimal paths or decisions based on measurable criteria.
Use Case:
Navigation apps like Google Maps or Waze use weighted graphs to represent road networks, where weights signify distance or travel time. This allows for shortest path calculations using Dijkstra's or A* algorithms.
Also Read: Data Structures & Algorithm in Python: Everything You Need to Know in 2025
A multigraph allows multiple edges (parallel edges) between the same set of nodes. This is useful when multiple relationships or repeated connections exist between elements.
Use Case:
Model airline routes between two cities. A multigraph lets you represent multiple flights operated by different airlines or multiple times daily on the same route.
A sparse graph is a graph in which the number of edges is much lower than the number of possible edges. This structure is beneficial for reducing space and computation time in large-scale systems.
Use Case:
You’ll often use sparse graphs in web crawling, where most web pages link to only a few others. They’re also ideal for modeling large-scale social networks where most users are connected to only a handful of others.
Also Read: Web Scraping vs Web Crawling: Differences, Similarities and Use Cases
Now that you understand the different types of graphs in data structures, let’s explore how these concepts are applied in real-world scenarios across various domains.
Graphs in data structure are widely used across multiple industries and technologies due to their ability to model relationships and connections. From navigation systems to recommendation engines, graphs play a crucial role in solving complex real-world problems through structured data representation.
Here are some of the most impactful applications of graphs in data structures:
After exploring the various types of graphs in data structures and applications, it is essential to evaluate where graphs truly shine and where they may fall short. Let us look at the key advantages and disadvantages to better understand their practical value in development.
Graphs in data structure are fundamental for representing dynamic systems where elements are interconnected in complex ways. Unlike linear structures, graphs allow you to capture multi-directional relationships, enabling more efficient modeling of use cases like fraud detection, data lineage tracking, and network design. However, despite their flexibility, graphs come with trade-offs in terms of complexity and performance.
Understanding where graph data structures excel and where they fall short can help you make informed decisions about when to use them and what to watch out for.
Here’s a concise breakdown of the advantages and disadvantages of graph data structures, along with real-world examples to show where they shine and where they struggle:
Aspect |
Advantages |
Disadvantages |
Real-World Example |
Structure | Can model non-linear relationships with cycles and loops | It can be challenging to visualize and manage at a large scale | Social media follower network |
Flexibility | No hierarchy restriction like trees; ideal for many-to-many relationships | May lead to data redundancy and harder maintenance | Web page link structure |
Problem Solving | Helpful in solving shortest paths, traversals, and connectivity problems | Some problems (e.g., detecting cycles) require complex logic | GPS route planning |
Algorithm Support | Rich library of standard algorithms (BFS, DFS, Dijkstra, etc.) | Algorithms can be complex to implement and debug correctly | Airline route optimization |
Data Modeling | Great for representing real-world systems and interconnections | Requires a good understanding of graph theory for correct usage | Fraud detection in financial systems |
Scalability | Can scale to large and complex systems | Performance issues in storage and traversal for large, dense graphs | Graph Neural Networks (GNNs) in machine learning |
Storage Options | Supports adjacency list/matrix formats to optimize for space or speed | Choosing the wrong storage format can lead to inefficiency | Sparse graphs for social media vs. dense graphs in |
Also Read: Difference Between DFS and BFS: DFS vs BFS, Similarities, and More
You've explored the major types of graphs in data structures and applications. Let’s see how upGrad can help you further master graphs in data structure.
Graphs form the foundation of many data-driven systems and algorithms. From simple undirected graphs to complex structures like directed acyclic graphs, each type plays a key role in solving real-world problems such as social networking, recommendation engines, and network routing. A clear understanding of the different types of graphs in data structure enhances your ability to model relationships and build efficient algorithms.
Mastering graph concepts requires hands-on practice and practical use cases. upGrad’s industry-relevant software development programs help you build a strong foundation in core data structure concepts like graphs, trees, arrays, algorithms, and real-world applications.
Here are some additional courses that can boost your programming journey and prepare you for real-world development:
Not sure how types of graphs in data structure apply to real-world projects? Connect with upGrad’s expert counselors or drop by your nearest upGrad offline center to discover a personalized learning path aligned with your goals.
Unlock the power of data with our popular Data Science courses, designed to make you proficient in analytics, machine learning, and big data!
Elevate your career by learning essential Data Science skills such as statistical modeling, big data processing, predictive analytics, and SQL!
Stay informed and inspired with our popular Data Science articles, offering expert insights, trends, and practical tips for aspiring data professionals!
Reference:
https://igotanoffer.com/blogs/tech/google-software-engineer-interview
900 articles published
Director of Engineering @ upGrad. Motivated to leverage technology to solve problems. Seasoned leader for startups and fast moving orgs. Working on solving problems of scale and long term technology s...
Get Free Consultation
By submitting, I accept the T&C and
Privacy Policy
Start Your Career in Data Science Today
Top Resources