Recursion in Data Structure: How Does it Work, Types & When Used

Let us start with the definition of recursion in the data structure. We will later discuss different types of recursion and how recursion is used to solve different problems.

What is recursion?

In simple words, recursion is a problem solving, and in some cases, a programming technique that has a very special and exclusive property. In recursion, a function or method has the ability of calling itself to solve the problem. The process of recursion involves solving a problem by turning it into smaller varieties of itself.

The process in which a function calls itself could happen directly as well as indirectly. This difference in call gives rise to different types of recursion, which we will talk about a little later. Some of the problems that can be solved using recursion include DFS of Graph, Towers of Hanoi, Different Types of Tree Traversals, and others. 

Read: 13 Interesting Data Structure Project Ideas

How does recursion work?

The concept of recursion is established on the idea that a problem can be solved much easily and in lesser time if it is represented in one or smaller versions. Adding base conditions to stop recursion is another important part of using this algorithm to solve a problem. 

People often believe that it is not possible to define an entity in terms of itself.  Recursion proves that theory wrong. And if this technique is carried out in the right way, it could yield very powerful results. Let us see how recursion works with a few examples. What is a sentence? It can be defined as two or more sentences joined together with the help of conjunction. Similarly, a folder could be a storage device that is used to store files and folders. An ancestor could be a parent of one and an ancestor of another family member in the family tree. 

Recursion helps in defining complex situations using a few very simple words. How would you usually define an ancestor? A parent, a grandparent, or a great grandparent. This could go on. Similarly, defining a folder could be a tough task. It could be anything that holds some files and folders that could be files and folders in their own right, and this could again go on. This is why recursion makes defining situations a lot easier than usual. 

Recursion is also a good enough programming technique. A recursive subroutine is defined as one that directly or indirectly calls itself. Calling a subroutine directly signifies that the definition of the subroutine already has the call statement of calling the subroutine that has been defined.

On the other hand, the indirect calling of a subroutine happens when a subroutine calls another subroutine, which then calls the original subroutine. Recursion can use a few lines of code to describe a very complex task. Let us now turn our attention to the different types of recursion that we have already touched upon. 

Also read: Top 6 Programming Languages to Learn

Types of recursion

There are only two types of recursion as has already been mentioned. Let us see how they are different from one another. Direct recursion is the simpler way as it only involves a single step of calling the original function or method or subroutine. On the other hand, indirect recursion involves several steps.

Get our free whitepaper!
Data Science in Healthcare
the next biggest thing
Download Now

The first call is made by the original method to a second method, which in turn calls the original method. This chain of calls can feature a number of methods or functions. In simple words, we can say that there is always a variation in the depth of indirect recursion, and this variation in depth depends on the number of methods involved in the process. 

Direct recursion can be used to call just a single function by itself. On the other hand, indirect recursion can be used to call more than one method or function with the help of other functions, and that too, a number of times. Indirect recursion doesn’t make overhead while its direct counterpart does. 

When is recursion used?

There are situations in which you can use recursion or iteration. However, you should always choose a solution that appears to be the more natural fit for a problem. A recursion is always a suitable option when it comes to data abstraction. People often use recursive definitions to define data and related operations.

And it won’t be wrong to say that recursion is mostly the natural solution for problems associate with the implementation of different operations on data. However, there are certain things related to recursion that may not make it the best solution for every problem. In these situations, an alternative like the iterative method is the best fit. 

The implementation of recursion uses a lot of stack space, which can often result in redundancy. Every time we use recursion, we call a method that results in the creation of a new instance of that method. This new instance carries different parameters and variables, which are stored on the stack, and are taken on the return. So while recursion is the more simple solution than others, it isn’t usually the most practical. 

Also, we don’t have a set of pre-defined rules that can help choose iteration or recursion for different problems. The biggest benefit of using recursion is that it is a concise method. This makes reading and maintaining it easier tasks than usual. But recursive methods aren’t the most efficient methods available to us as they take a lot of storage space and consume a lot of time during implementation. 

Keeping in mind a few things can help you decide whether choosing a recursion for a problem is the right way to go or not. You should choose recursion if the problem that you are going to solve is mentioned in recursive terms and the recursive solution seems less complex.

You should know that recursion, in most cases, simplifies the implementation of the algorithms that you want to use. Now if the complexities associated with using iteration and recursion are the same for a given problem, you should go with iteration as the chances of it being more efficient are higher. 

Also check out: 23 Best Computer Programming Courses To Get a Job

Conclusion

However, there could be situations in which making a decision may not be that easy. You have to choose between efficiency and simplicity. If you are an experienced designer, you would know exactly when to give more importance to efficiency and when choosing simplicity or conciseness over it is the way to go.

If you are curious to learn about data structure, data science, check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.

Prepare for a Career of the Future

UPGRAD AND IIIT-BANGALORE'S PG DIPLOMA IN DATA SCIENCE
Learn More

Leave a comment

Your email address will not be published. Required fields are marked *

×
Download Whitepaper
Download Whitepaper
By clicking Download Whitepaper, you agree to our terms and conditions and our privacy policy.
Get our free whitepaper!
Data Science in Healthcare
the next biggest thing
Download Now
Aspire to be a Data Scientist
Download syllabus & join our Data Science Program and develop practical knowledge & skills.
Download syllabus
By clicking Download syllabus,
you agree to our terms and conditions and our privacy policy.