Blog_Banner_Asset
    Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconGenetic Algorithm in Artificial Intelligence: Overview, Benefits & Key Terminologies

Genetic Algorithm in Artificial Intelligence: Overview, Benefits & Key Terminologies

Last updated:
21st Dec, 2020
Views
Read Time
10 Mins
share image icon
In this article
Chevron in toc
View All
Genetic Algorithm in Artificial Intelligence: Overview, Benefits & Key Terminologies

A genetic algorithm is used to solve complicated problems with a greater number of variables & possible outcomes/solutions. The combinations of different solutions are passed through the Darwinian based algorithm to find the best solutions. The poorer solutions are then replaced with the offspring of good solutions.

The whole process of genetic algorithms is a computer program simulation in which the attributes of the problem & solution are treated as the attributes of the Darwinian theory. The basic processes which are involved in genetic algorithms are as follows:

  • A population of solutions is built to any particular problem. The elements of the population compete with each other to find out the fittest one.
  • The elements of the population that are fit are only allowed to create offspring (better solutions).
  • The genes from the fittest parents (solutions) create a better offspring. Thus, future solutions will be better and sustainable.

Top Machine Learning and AI Courses Online

The concept of the Genetic Algorithm in Artificial Intelligence stands out as a particularly innovative and effective approach. Drawing from principles of natural selection and genetics, this algorithm mimics the evolutionary process to find solutions to problems that are otherwise daunting for traditional algorithms. My firsthand experience with Genetic Algorithms (GAs) has shown me their unparalleled ability to evolve solutions over generations, adapting to the problem at hand with remarkable efficiency. In this article, aimed at professionals aspiring to delve into the AI field, I will share insights on the essence of Genetic Algorithms, their working mechanism in AI, key terminologies, benefits, uses, limitations, and how they compare to traditional algorithms. This overview is designed to equip you with a solid understanding of GAs, setting a foundation for exploring their potential in your AI endeavors.

Ads of upGrad blog

Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

Trending Machine Learning Skills

What is a Genetic Algorithm?

When faced with complex problems that have many variables and potential outcomes or solutions, a genetic algorithm is utilized to solve them. To identify the optimal solutions, various combinations of solutions are run through a Darwinian-based algorithm. Next, the progeny of excellent solutions takes the place of the inferior ones.

Here’s how genetic algorithm works:

  1. Initialization: A population of potential solutions is randomly generated to represent the first generation.
  2. Fitness Evaluation: Each solution in the population is evaluated based on a predefined fitness function, which measures how well it solves the problem at hand.
  3. Selection: Solutions are selected for reproduction based on their fitness. The fitter individuals are more likely to be chosen, simulating the “survival of the fittest.”
  4. Crossover: Pairs of selected solutions undergo genetic crossover, exchanging parts of their genetic information to create new offspring.
  5. Mutation: Some of the new solutions undergo random changes, or mutations, to introduce genetic diversity.
  6. Replacement: The new generation, now composed of both parents and offspring, replaces the previous generation.
  7. Termination: The algorithm repeats these steps for multiple generations or until a satisfactory solution is found.

Working of Genetic Algorithms in AI 

The working of a genetic algorithm in AI is as follows:

  • The components of the population, i.e., elements, are termed as genes in genetic algorithms in AI. These genes form an individual in the population (also termed as a chromosome).
  • A search space is created in which all the individuals are accumulated. All the individuals are coded within a finite length in the search space.
  • Each individual in the search space (population) is given a fitness score, which tells its ability to compete with other individuals.
  • All the individuals with their respective fitness scores are sought & maintained by the genetic algorithm & the individuals with high fitness scores are given a chance to reproduce.
  • The new offspring are having better ‘partial solutions’ as compared to their parents. Genetic algorithms also keep the space of the search space dynamic for accumulating the new solutions (offspring).
  • This process is repeated until the offsprings do not have any new attributes/features than their parents (convergence). The population converges at the end, and only the fittest solutions remain along with their offspring (better solutions). The fitness score of new individuals in the population (offspring) are also calculated. 

Key Terminologies in Genetic Algorithms

  • Selection Operator – This operator in genetic algorithms in AI is responsible for selecting the individuals with better fitness scores for reproduction. 
  • Crossover Operator – The crossover operator chooses a crossover site from where the merge will happen. The crossover sites in both the individuals available for mating are chosen randomly and form new individuals.
  • Mutation Operator – This operator in the genetic algorithm is responsible for embedding random genes in the offspring to maintain diversity and avoid premature convergence.
  • Premature Convergence – If a problem is optimized quickly, it means that the offspring were not produced at many levels. The solutions will also not be of optimal quality. To avoid premature convergence, new genes are added by the mutation operator.
  • Allele – The value of a particular gene in a chromosome is termed as an allele. The specified set of alleles for each gene defines the possible chromosomes of that particular gene.

Read: Types of AI Algorithms You Should Know

Benefits and Uses of Genetic Algorithms

  • The solutions created through genetic algorithms are strong & reliable as compared to other solutions.
  • They increase the size of solutions as solutions can be optimized over a large search scale. This algorithm also can manage a large population.
  • The solutions produced by genetic algorithms do not deviate much on slightly changing the input. They can handle a little bit of noise.
  • Genetic algorithms have a stochastic distribution that follows probabilistic transition rules, making them hard to predict but easy to analyze.
  • Genetic algorithms can also perform in noisy environments. It can also work in case of complex & discrete problems. 
  • Due to their effectiveness, genetic algorithms have many applications like neural networks, fuzzy logic, code-breaking, filtering & signal processing. You can learn more about the genetic algorithms in AI via the top courses offered by upGrad.

Also Read: Types of Classification Algorithm in ML

Limitations of Genetic Algorithms

Genetic Algorithms have a few limitations as well. Let me highlight them in points:

  • Computational Intensity: Genetic algorithm in artificial intelligence can be computationally demanding, especially for complex problems and large solution spaces, leading to longer processing times.
  • Solution Quality: There’s no guarantee of finding the optimal solution. GAs may converge to local optimal or suboptimal solutions, especially if the search space is not well-explored. This can hamper the working of genetic algorithm in artificial intelligence.
  • Parameter Sensitivity: Performance is sensitive to the choice of parameters like crossover and mutation rates. Suboptimal parameter settings can hinder convergence.
  • Difficulty in Representation: Choosing an appropriate representation for problem solutions can be challenging, and a poorly chosen representation may impede the algorithm’s effectiveness. This can make application of genetic algorithm in artificial intelligence challenging.
  • Not Always Suitable for Continuous Spaces: Genetic algorithms in AI are more natural for discrete search spaces. Adapting them for continuous optimization problems requires additional techniques like encoding and decoding.
  • Limited Handling of Constraints: Managing constraints in optimization problems can be tricky. Ensuring solutions meet all constraints might require additional mechanisms.

Difference between Genetic Algorithms and Traditional Algorithms

This table provides a concise overview of the distinctions between Genetic Algorithm in artificial intelligence and Traditional Algorithms across various dimensions.

 

AspectGenetic Algorithms (GAs)Traditional Algorithms
InspirationMimics natural selection and genetics.Follows deterministic and rule-based logic.
Exploration ApproachWorks on a population of solutions, exploring multiple potential solutions simultaneously.Operates on a single solution at a time, iteratively refining it.
Solution RepresentationUtilizes a coding mechanism, often binary strings, to represent solutions.Uses explicit data structures for solutions, depending on the problem.
Search StrategyGlobal search strategy, suitable for complex and vast solution spaces.Local search strategy, focusing on refining a single solution.
Optimization ScopeWell-suited for optimization problems with multiple solutions and uncertainties.Efficient for well-defined, deterministic problems with a single solution.
Convergence PatternMay converge to suboptimal solutions; convergence is probabilistic.Converges to the optimal solution under defined conditions; deterministic convergence.
Parameterization ChallengeRequires tuning parameters like crossover and mutation rates.Generally involves fewer adjustable parameters.
Problem TypesVersatile, suitable for optimization, search, and machine learning problems.Effective for problems with clear rules and structures.

Why Learn from upGrad?

upGrad provides various courses in AI which are affiliated with top universities & institutions. These courses follow an industry-first approach and are taught by expert faculties. The courses provided in AI by upGrad are as follows:

The benefits of opting for these courses on upGrad are as follows: 

  • upGrad will also provide placement support if you opt for these courses. upGrad is partnered with the top players in the industry.
  • You will get personalized mentorship if you opt for the aforementioned courses.
  • You will get the opportunity to choose between many projects, case studies, assignments, etc. 
  • You will also earn the alumni status of LJMU or IIIT Bangalore if you opt for these courses.
  • You will come across mentorships sessions from industry experts to know more about the AI industry.
  • A career mentor will also be provided to you via upGrad for complete 360-degree support.
  • These courses in AI from upGrad will also cover programming languages, tools, and databases (libraries) used in the AI industry. You will also have access to the vast upGrad community.

Popular AI and ML Blogs & Free Courses

Conclusion

The exploration of genetic algorithms in artificial intelligence offers a fascinating glimpse into how nature-inspired strategies can be harnessed to solve complex problems in the digital realm. These algorithms, grounded in the principles of natural selection and genetic evolution, present a robust framework for optimization and search tasks across various domains. While they boast significant advantages such as flexibility, adaptability, and efficiency in finding solutions to problems where traditional algorithms might falter, it’s also crucial to acknowledge their limitations, including the potential for premature convergence and the need for extensive computational resources.

Ads of upGrad blog

You can know more about this topic by opting for the AI courses provided by upGrad taught by expert faculties. The LJMU course on upGrad is of 18 months, while the other is of 12 months. Start learning AI now!

FYI: Free NLP online course!

If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.

Profile

Pavan Vadapalli

Blog Author
Director of Engineering @ upGrad. Motivated to leverage technology to solve problems. Seasoned leader for startups and fast moving orgs. Working on solving problems of scale and long term technology strategy.
Get Free Consultation

Select Coursecaret down icon
Selectcaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Frequently Asked Questions (FAQs)

1What do you mean by genetic algorithm, and how is it related to biology?

Algorithms, in general, are a set of rules or instructions which are to be followed by a computer or a device to execute a particular task or to solve a problem. The genetic algorithm is an evolutionary algorithm that is based on one of the biological theories of Charles Darwin. It's called the survival of the fittest, and according to this phrase, only the organisms who adjust best to their environment have the chances of survival and reproduction. Similar to the theory, the genetic algorithm is an iterative algorithm that finds a solution that is the best solution among the solutions available to the device. The chromosomes are represented by arrays of bits or characters in a genetic algorithm, which implements the computing paradigm. Each string corresponds to a possible solution. The genetic algorithm then tweaks the most promising chromosomes to pursue better results.

2What are the real-life use cases of genetic algorithms?

By replicating the evolutionary process of survival of the fittest to attain a given goal, genetic algorithms potentially approach complex issues with numerous variables and a massive number of alternative solutions. In economics, genetic algorithms represent concepts including game theory, the cobweb model, asset pricing, and schedule optimization. They're also utilized to figure out how to make goods delivery more efficient. They're employed in DNA analysis to determine the DNA structure based on spectrometric data. In multimodal optimization issues, they are utilized to give numerous optimal solutions. They are employed in the creation of parametric aircraft designs. The aircraft's parameters are updated and enhanced using genetic algorithms to produce superior designs.

3What are the limitations of the genetic algorithm?

Like any other algorithm, genetic algorithms also have their own set of limitations. The first limitation is that these algorithms are computationally expensive because the evaluation of each individual necessitates the training of a model. The second problem faced with these algorithms is that they are ineffective in tackling minor problems. Another issue with these algorithms is that their stochastic nature can take a long time to converge, and improper implementation may cause the algorithm to converge to an unsatisfactory result. Also, in a genetic algorithm, the quality of the final answer is not guaranteed. In these algorithms, the repetitive calculation of the fittest values may cause specific issues with computing hurdles.

Explore Free Courses

Suggested Blogs

Artificial Intelligence course fees
5359
Artificial intelligence (AI) was one of the most used words in 2023, which emphasizes how important and widespread this technology has become. If you
Read More

by venkatesh Rajanala

29 Feb 2024

Artificial Intelligence in Banking 2024: Examples & Challenges
6056
Introduction Millennials and their changing preferences have led to a wide-scale disruption of daily processes in many industries and a simultaneous g
Read More

by Pavan Vadapalli

27 Feb 2024

Top 9 Python Libraries for Machine Learning in 2024
75542
Machine learning is the most algorithm-intense field in computer science. Gone are those days when people had to code all algorithms for machine learn
Read More

by upGrad

19 Feb 2024

Top 15 IoT Interview Questions & Answers 2024 – For Beginners & Experienced
64393
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

19 Feb 2024

Data Preprocessing in Machine Learning: 7 Easy Steps To Follow
152550
Summary: In this article, you will learn about data preprocessing in Machine Learning: 7 easy steps to follow. Acquire the dataset Import all the cr
Read More

by Kechit Goyal

18 Feb 2024

Artificial Intelligence Salary in India [For Beginners & Experienced] in 2024
908583
Artificial Intelligence (AI) has been one of the hottest buzzwords in the tech sphere for quite some time now. As Data Science is advancing, both AI a
Read More

by upGrad

18 Feb 2024

24 Exciting IoT Project Ideas & Topics For Beginners 2024 [Latest]
758929
Summary: In this article, you will learn the 24 Exciting IoT Project Ideas & Topics. Take a glimpse at the project ideas listed below. Smart Agr
Read More

by Kechit Goyal

18 Feb 2024

Natural Language Processing (NLP) Projects & Topics For Beginners [2023]
107510
What are Natural Language Processing Projects? NLP project ideas advanced encompass various applications and research areas that leverage computation
Read More

by Pavan Vadapalli

17 Feb 2024

45+ Interesting Machine Learning Project Ideas For Beginners [2024]
327929
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

16 Feb 2024

Schedule 1:1 free counsellingTalk to Career Expert
icon
footer sticky close icon