Programs

Classification Model using Artificial Neural Networks (ANN)

In the machine learning terminology Classification refers to a predictive modelling problem where the input data is classified as one of the predefined labelled classes. For example, predicting Yes or No, True or False falls in the category of Binary Classification as the number of outputs are limited to two labels.

Similarly, output having multiple classes like classifying different age groups are called multiclass classification problems. Classification problems are one of the most commonly used or defined types of ML problem that can be used in various use cases. There are various Machine Learning models that can be used for classification problems.

Ranging from Bagging to Boosting techniques although ML is more than capable of handling classification use cases, Neural Networks come into picture when we have a high amount of output classes and high amount of data to support the performance of the model. Going forward we’ll look at how we can implement a Classification Model using Neural Networks on Keras (Python). 

Neural Networks

Neural networks are loosely representative of the human brain learning. An Artificial Neural Network consists of Neurons which in turn are responsible for creating layers. These Neurons are also known as tuned parameters.

The output from each layer is passed on to the next layer. There are different nonlinear activation functions to each layer, which helps in the learning process and the output of each layer. The output layer is also known as terminal neurons.

Source: Wikipedia

The weights associated with the neurons and which are responsible for the overall predictions are updated on each epoch. The learning rate is optimised using various optimisers. Each Neural Network is provided with a cost function which is minimised as the learning continues. The best weights are then used on which the cost function is giving the best results.

Read: TensorFlow Object Detection Tutorial For Beginners

Classification Problem

For this article, we will be using Keras to build the Neural Network. Keras can be directly imported in python using the following commands.

import tensorflow as tf

from tensorflow import keras

from keras.models import Sequential

from keras.layers import Dense

Dataset and Target variable

We will be using Diabetes dataset which will be having the following features:

Input Variables (X):

  • Pregnancies: Number of times pregnant
  • Glucose: Plasma glucose concentration a 2 hours in an oral glucose tolerance test
  • BloodPressure: Diastolic blood pressure (mm Hg)
  • SkinThickness: Triceps skin fold thickness (mm)
  • Insulin: 2-Hour serum insulin (mu U/ml)
  • BMI: Body mass index (weight in kg/(height in m)^2)
  • DiabetesPedigreeFunction: Diabetes pedigree function
  • Age: Age (years)

Output Variables (y):

Outcome: Class variable (0 or 1) [Patient is having Diabetes or not]

# load the dataset

df= loadtxt(‘pima-indians-diabetes.csv’, delimiter=’,’)

# Split data into X (input) and Y (output)

X = dataset[:,0:8]

y = dataset[:,8]

Define Keras Model

We can start building the neural network using sequential models. This top down approach helps build a Neural net architecture and play with the shape and layers. The first layer will have the number of features which can be fixed using input_dim. We will set it to 8 in this condition.

Creating Neural Networks is not a very easy process. There are many trials and errors that take place before a good model is built. We will build a Fully Connected network structure using the Dense class in keras. The Neuron counts as the first argument to be provided to the dense layer.

The activation function can be set using the activation argument. We will use the Rectified Linear Unit as the activation function in this case. There are other options like Sigmoid or TanH, but RELU is a very generalised and a better option.

# define the keras model

model = Sequential()

model.add(Dense(12, input_dim=8, activation=’relu’))

model.add(Dense(8, activation=’relu’))

model.add(Dense(1, activation=’sigmoid’))

Compile Keras Model

Compiling the model is the next step after model definition. Tensorflow is used for model compilation. Compilation is the process where parameters are set for model training and predictions. CPU/GPU or distributed memories can be used in the background.

We have to specify a loss function which is used to evaluate weights for the different layers. The optimiser adjusts the learning rate and goes through various sets of weights. In this case we will use Binary Cross Entropy as the loss function. In the case of optimizer, we will use ADAM which is an efficient stochastic gradient descent algorithm.

It is very popularly used for tuning. Finally, because it is a classification problem, we will collect and report the classification accuracy, defined via the metrics argument. We will use accuracy in this case.

# compile the keras model

model.compile(loss=’binary_crossentropy’, optimizer=’adam’, metrics=[‘accuracy’])

Model fit and Evaluation

Fitting the model is essentially known as model training. After Compiling the model, the model is ready to efficiently go over the data and train itself. The fit() function from Keras can be used for the process of model training. The two main parameters used before model training are:

  1. Epochs: One pass through the whole dataset.
  2. Batch Size: Weights are updated at each batch size. Epochs consist of equally distributed batches of data.

# fit the keras model on the dataset

model.fit(X, y, epochs=150, batch_size=10)

A GPU or a CPU is used in this process. The training can be a very long process depending on the epochs, batch size and most importantly the size of Data.

We can also evaluate the model on the training dataset using the evaluate() function. The data can be divided into training and testing sets and testing X and Y can be used for model evaluation. 

For each input and output pair, this will produce a forecast and gather scores, including the average loss and any measurements we have installed, such as precision. 

A list of two values will be returned by the evaluate() function. The first will be the model loss on the dataset and the second will be the model’s accuracy on the dataset. We are only interested in the accuracy of the report, so we will disregard the importance of the loss.

# evaluate the keras model

_, accuracy = model.evaluate(Xtest, ytest)

print(‘Accuracy: %.2f’ % (accuracy*100))

Also Read: Neural Network Model Introduction

Conclusion

We created and evaluated a classification based Neural Network. Although the data used was small in this case, Neural networks are mostly suitable for big numerical datasets. 

If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.

Lead the AI Driven Technological Revolution

PG DIPLOMA IN MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE
Learn More

Leave a comment

Your email address will not be published.

Accelerate Your Career with upGrad

Our Popular Machine Learning Course

×