Blog_Banner_Asset
    Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconBayesian Linear Regression: What is, Function & Real Life Applications in 2023

Bayesian Linear Regression: What is, Function & Real Life Applications in 2023

Last updated:
8th Jan, 2021
Views
Read Time
5 Mins
share image icon
In this article
Chevron in toc
View All
Bayesian Linear Regression: What is, Function & Real Life Applications in 2023

What Is A Linear Regression?

Linear regression attempts to show the connection between two factors by fitting a direct condition to noticed information. One variable is viewed as an illustrative variable, and the other is viewed as a needy variable. For instance, a modeller should relate loads of people to their statues utilising a straight relapse model.

Top Machine Learning and AI Courses Online

Now the next step is to know what the Bayesian linear equation is and how it can be calculated to get the desired result.

Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

Ads of upGrad blog

Now, What Is The Bayesian Linear Equation?

So, when we talk about Bayesian regression methods, we know that it is a very powerful method because they provide us with the entire distribution over regression parameters. In order to calculate inadequate data or unequal distributed data, Bayesian Linear Regression provides a natural mechanism.

You can place a prior on the coefficients so that if the data is absent, the prior can take the place of data. Statistical analysis is conducted under the conditions of Bayesian interface in Bayesian linear regression in statistics.

Trending Machine Learning Skills

We use probability distribution instead of point estimates to devise linear regression.

The output is achieved from a probability distribution, rather than usual regression techniques. The goal of Bayesian linear regression is to find Posterior instead of model parameters.

Model parameters are supposed to occur from a distribution.

The posterior expression is

Posterior= (Likelihood*Prior)/Normalization

The above equation is similar to Bayes’  Theorem, which is

 

 

 

Source

Real-life Application Of Bayesian Linear Regression

According to the following graphs, Linear regression and Bayesian regression can generate the same predictions.

Source

Source

In the last graph, we can assume that if the predictive distribution is inside the thick colour, then the density of data is high and if it is in the scarce area the density can be considered as low.

Let’s talk about the advantage of Bayesian Regression:

  • With the help of Bayesian processing, we can retrieve the complete variety of inferential solutions instead of a point estimate.
  • It works efficiently with the small size of the dataset.
  • It is very suitable for the online form of learning, whereas, in the form of batch learning, we have the whole dataset.
  • It is a very powerful and tested approach.

Now, let’s talk about the disadvantage of Bayesian linear regression.

  • It does not work efficiently if the dataset contains a huge amount of data.
  • The conjecture of the model can be time-consuming.

Read: Linear Project Ideas & Topics

Conclusion

Ads of upGrad blog

So, we can see what a powerful method Bayesian linear regression is. Many advantages can be taken with Bayesian linear regression and is one of the natural mechanism to calculate insufficient or poorly distributed data.

A Bayesian viewpoint is an instinctive form of seeing the world. To its frequent counterpart, Bayesian Inference can embellish a very convenient substitute. It is used in various fields like data-science, machine learning, and many more. It helps in building various models with the help of which we can solve many problems.

Popular AI and ML Blogs & Free Courses

If you would like to know more about careers in Machine Learning and Artificial Intelligence, check out IIIT Bangalore and upGrad’s Master of Science in Machine Learning & AI .

Profile

Pavan Vadapalli

Blog Author
Director of Engineering @ upGrad. Motivated to leverage technology to solve problems. Seasoned leader for startups and fast moving orgs. Working on solving problems of scale and long term technology strategy.
Get Free Consultation

Select Coursecaret down icon
Selectcaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Frequently Asked Questions (FAQs)

1What is the Bayesian inference?

Bayesian inferences are a group of mathematical operations based on the Bayes theorem. It is a mathematical method for determining conditional probability. The possibility of a result occurring dependent on the likelihood of a primary outcome occurring is known as conditional probability. Professionals can use Bayes theorem to alter previous forecasts or hypotheses. It is used in finance to assess the risk of providing money to potential borrowers. By considering how probable each specific person is to have an illness and the general accuracy of the test, Bayes' theorem may be used to evaluate the accuracy of medical test findings.

2How is bayesian linear regression different from ordinary linear regression?

The ordinary linear regression is a frequentist method, which implies that there are sufficient measurements to make a valid statement. The data is augmented with extra information in the form of a prior probability distribution in the Bayesian method. The posterior belief about the parameters is obtained by combining the previous knowledge about the parameters with the data's likelihood function using Bayes theorem. The Bayesian interpretation of both linear and logistic regression employs statistical analysis within the context of Bayesian hypothesis.

3How does Bayesian linear regression work?

We define linear regression using probability distributions rather than point estimates from a Bayesian perspective. The answer, y, is supposed to be chosen from a probability distribution rather than being evaluated as a single number. The result, y, is produced by a normal (Gaussian) distribution with a mean and variance. In linear regression, the mean is calculated by multiplying the weight matrix by the predictor matrix. Since this is a multi-dimensional version of the model, the variance is the square of the standard deviation multiplied by the Identity matrix. The goal of Bayesian Linear Regression is to identify the posterior distribution for the model parameters, not to find a particular perfect result for the model parameters.

Explore Free Courses

Suggested Blogs

Data Preprocessing in Machine Learning: 7 Easy Steps To Follow
135390
Summary: In this article, you will learn about data preprocessing in Machine Learning: 7 easy steps to follow. Acquire the dataset Import all the cr
Read More

by Kechit Goyal

29 Oct 2023

Natural Language Processing (NLP) Projects & Topics For Beginners [2023]
99110
What are Natural Language Processing Projects? NLP project ideas advanced encompass various applications and research areas that leverage computation
Read More

by Pavan Vadapalli

04 Oct 2023

15 Interesting MATLAB Project Ideas & Topics For Beginners [2023]
70126
Learning about MATLAB can be tedious. It’s capable of performing many tasks and solving highly complex problems of different domains. If youR
Read More

by Pavan Vadapalli

03 Oct 2023

Top 16 Artificial Intelligence Project Ideas & Topics for Beginners [2023]
360212
Summary: In this article, you will learn the 16 AI project ideas & Topics. Take a glimpse below. Predict Housing Price Enron Investigation Stock
Read More

by Pavan Vadapalli

27 Sep 2023

Top 15 Deep Learning Interview Questions & Answers
6277
Although still evolving, Deep Learning has emerged as a breakthrough technology in the field of Data Science. From Google’s DeepMind to self-dri
Read More

by Prashant Kathuria

21 Sep 2023

Top 8 Exciting AWS Projects & Ideas For Beginners [2023]
90915
AWS Projects & Topics Looking for AWS project ideas? Then you’ve come to the right place because, in this article, we’ve shared multiple AWS proj
Read More

by Pavan Vadapalli

19 Sep 2023

Top 15 IoT Interview Questions & Answers 2023 – For Beginners & Experienced
62755
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

15 Sep 2023

45+ Interesting Machine Learning Project Ideas For Beginners [2023]
310671
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

14 Sep 2023

Why GPUs for Machine Learning? Ultimate Guide
1412
In the realm of modern technology, the convergence of data and algorithms has paved the way for groundbreaking advancements in artificial intelligence
Read More

by Pavan Vadapalli

14 Sep 2023

Schedule 1:1 free counsellingTalk to Career Expert
icon
footer sticky close icon