Blog_Banner_Asset
    Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconArtificial Intelligence Engineers: Myths vs. Realities

Artificial Intelligence Engineers: Myths vs. Realities

Last updated:
8th May, 2018
Views
Read Time
6 Mins
share image icon
In this article
Chevron in toc
View All
Artificial Intelligence Engineers: Myths vs. Realities

Artificial intelligence has seen a rapid growth in the domains it found relevance in. From smart refrigerators to self-driving cars – everything is a result of sophisticated artificial intelligence algorithms. Who’s responsible for it? The Artificial Intelligence Engineers.

Best Machine Learning and AI Courses Online

Artificial intelligence is thought to be the same as machine learning, but in reality, the latter is a subset of the former. AI is a broad field with diverse applications, but also one of the most challenging domains to work in. Artificial Intelligence aims to impart machines the ability to mimic humans in almost every aspect – which is way more difficult than it sounds. Machines inherently are dumb devices and require a lot of data, computing power, and efforts to learn.

Artificial Intelligence Engineers

The most successful AI professionals often share common characteristics and love for machines that allow them to bloom in their career. Working with AI requires an extremely analytical and logical thought process, and the ability to solve the most challenging problems most cost-effectively and efficiently. Artificial intelligence engineers are expected to have a clear foresight about the technological innovations that translate to state-of-the-art programs that allow businesses to remain competitive.

In-demand Machine Learning Skills

Ads of upGrad blog

Join the Artificial Intelligence Course online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.

Furthermore, AI specialists also need to armed with technical skills required to design, develop, maintain, monitor, and repair their systems and programs.  Finally, the AI professionals must be proficient in translating highly technical information in ways that are comprehensible to even those from a non-technical background. They need to work in collaboration with the rest of the organisation to produce the most insightful results.

Artificial Intelligence: Taking or Rather Taken Over

Alright, now that we’re on the same page regarding the job roles of an Artificial Intelligence Engineer, let’s look at some critical skills that any AI professional must possess.

Basics of computer science and maths form the backbone of most artificial intelligence programs. Entry level positions require at least a bachelor’s degree while positions entailing supervision, leadership, or administrative roles frequently require master’s or doctoral degrees.
Any aspiring AI engineer should be comfortable with:

  • Various level of math, including probability, statistics, algebra, and calculus.
  • Bayesian networking or graphical modelling, including neural nets.
  • Physics, engineering, and robotics.
  • Computer science, programming languages, and coding.
  • Cognitive science theory.

The field of Artificial Intelligence has been continuously growing and has given rise to various new technologies that these AI developers/engineers consistently work on. Let’s see what they are:

Natural Language Processing and Text Analytics

NLP uses and supports text analytics. NLP helps in understanding any sentence said in a natural language regarding structure, sentiment, intent, and meaning through statistical methods. NLP finds extensive use in fraud detection and security, a wide range of automated assistants (Siri, for instance), and applications for mining of unstructured data.

A Beginner’s Guide To Natural Language Understanding

Virtual Agents

From simple chatbots to advanced systems that can seamlessly interact with humans, all of this has been made possible because of AI and Artificial Intelligence engineers. The usage of these chatbots and virtual agents is increasing as organisations realise the importance of chatbots for customer service and support.

AI-optimised Hardware

Hardware needs to become much more accommodating as AI, and related technologies grow. And what does that mean?
Graphics processing units (GPU) and appliances specially designed and developed to run AI-oriented computational jobs efficiently. They’re having a massive impact on Deep Learning applications. Some vendors developing such GPUs include Cray, Google, IBM, Intel, and Nvidia.

Biometrics

Biometrics deal with the identification, measurement, and analysis of physical aspects of the human body. It allows much more natural interactions between humans and machines taking care of interactions related to touching, seeing, speaking and recognizing body language.

Deep Learning Platforms

Deep learning platforms take artificial intelligence and machine learning to a whole new level by working with advanced neural networks with various abstraction layers. This technology mimics the human brain by processing data and creating patterns that aid in decision making.

5 Breakthrough Applications of Machine Learning

Now, let’s walk you through some myths and misconceptions – we’re sure you, too, have some of these in mind. Let’s together bust them!

Myth #1: AI thinks exactly like a person – it can solve all the problems that humans can.

There is no such thing as general intelligence in AI yet, and perhaps we don’t need it either. If anything, today AI focuses more on teaching a lemur how to get food and not about letting a chimpanzee figure it out for themselves. Most of the AI functions are developed for a particular purpose, such as natural language processing (NLP), image recognition, search engines, gaming, predictions, or specific features in self-driving cars. This often brings higher business value than general intelligence. A specialist is always preferred over a generalist.

Myth #2: AI is the same thing as Machine Learning or Deep Learning.

AI is often misinterpreted for ML, Deep Learning, or even Cognitive Processing. However, the truth is that ML is a part of AI wherein feeding data regularly trains the machine. Like we mentioned earlier, AI is broader than that and forms the superset of the technologies we mentioned.

5 Applications of Natural Language Processing for Businesses in 2018

Myth #3: Artificial intelligence engineers just develop the system once, it keeps learning by itself then.

If only! Even machine learning, a subset of AI, remains extremely difficult to implement. Of course there are easier and tougher challenges, but in general, getting these algorithms to fit your business needs is a task in itself. Often the algorithms are easy to understand, but the challenge is in selecting the right algorithm for the problem and presenting the data to the algorithm in the correct way. This requires a comprehensive knowledge of the problem as well as a thorough understanding of the capabilities and constraints of the algorithms and models. Complicating matters further is the fact that machines require the correct amount of training to get artificially intelligent.
This training needs accurate data in as pure a form as possible. Further, the data that is used to train is extraordinarily dynamic and gets stale if not used at the right time. So, artificial intelligence engineers also need to perform iterations after iterations on their system to make sure it works seamlessly with such a dynamic data.  

Myth #4: AI algorithms can magically create intelligent systems. The quality of data that are fed is irrelevant for AI.  

AI is anything but “load and go.” AI won’t be of much help if you have an extremely broad or unprocessed data. Such data is indigestible for any system and will often result in erroneous results. Rather than ingesting anything and everything, an AI engineer needs to carefully curate the data and make sure it’s of the highest possible quality. An algorithm is nothing but a program, and a program requires data to work with. The better the data, the better the results.  

Ads of upGrad blog

Popular AI and ML Blogs & Free Courses

Myth #5: AI is an extremely new field.

John McCarthy coined the term “artificial intelligence” back in 1956 and then went on to define the domain for more than five decades. So, although the concept AI is not so new, it is much more widespread in the world today.

The Difference between Data Science, Machine Learning and Big Data!

Ah! So that’s about myths surrounding Artificial Intelligence engineers. Do let us know if you’ve heard any more such myths, and we’ll help you bust that too! We’ll be back with other Mythbusters.

Profile

Kechit Goyal

Blog Author
Experienced Developer, Team Player and a Leader with a demonstrated history of working in startups. Strong engineering professional with a Bachelor of Technology (BTech) focused in Computer Science from Indian Institute of Technology, Delhi.
Get Free Consultation

Select Coursecaret down icon
Selectcaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Explore Free Courses

Suggested Blogs

Top 8 Exciting AWS Projects & Ideas For Beginners [2023]
86225
AWS Projects & Topics Looking for AWS project ideas? Then you’ve come to the right place because, in this article, we’ve shared multiple AWS proj
Read More

by Pavan Vadapalli

19 Sep 2023

Data Preprocessing in Machine Learning: 7 Easy Steps To Follow
126179
Summary: In this article, you will learn about data preprocessing in Machine Learning: 7 easy steps to follow. Acquire the dataset Import all the cr
Read More

by Kechit Goyal

18 Sep 2023

Top 15 IoT Interview Questions & Answers 2023 – For Beginners & Experienced
61638
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

15 Sep 2023

45+ Interesting Machine Learning Project Ideas For Beginners [2023]
301281
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

14 Sep 2023

25 Machine Learning Interview Questions & Answers – Linear Regression
40461
Introduction Machine Learning Interviews can vary according to the types or categories, for instance, a few recruiters ask many Linear Regression int
Read More

by Thulasiram Gunipati

10 Sep 2023

13 Interesting Neural Network Project Ideas & Topics for Beginners [2023]
4258
The topic of neural networks has captivated the world of artificial intelligence and machine learning with its ability to mimic the human brain’
Read More

by Pavan Vadapalli

07 Sep 2023

14 Raspberry Pi Project Ideas & Topics For Beginners in 2023
59279
What is a Raspberry Pi? The Raspberry Pi is a low-cost computer about the size of a credit card that can be connected to a display or TV and controll
Read More

by Kechit Goyal

06 Sep 2023

AWS Salary in India in 2023 [For Freshers & Experienced]
900021
Summary: In this article, you will learn about AWS Salary in India For Freshers & Experienced. AWS Salary in India INR 6,07,000 per annum AW
Read More

by Pavan Vadapalli

04 Sep 2023

9 Interesting Linear Regression Project Ideas & Topics For Beginners [2023]
73554
Linear regression is a popular topic in machine learning. It’s a supervised learning algorithm and finds applications in many sectors. If you’re learn
Read More

by Pavan Vadapalli

02 Sep 2023

Schedule 1:1 free counsellingTalk to Career Expert
icon
footer sticky close icon