Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconArtificial Intelligencebreadcumb forward arrow iconTop NLP Projects on Github You Should Get Your Hands-on [2024]

Top NLP Projects on Github You Should Get Your Hands-on [2024]

Last updated:
26th Oct, 2022
Read Time
12 Mins
share image icon
In this article
Chevron in toc
View All
Top NLP Projects on Github You Should Get Your Hands-on [2024]

Artificial Intelligence has multiple branches, of which Natural language processing (NLP) has emerged as a powerful new-age tool. NLP goes back to the 1950s when Alan Turing released an article – “Computing Machinery and Intelligence” – that proposed a test (now known as the Turing test) involving automated interpretation and generation of natural human languages. Even so, NLP has only recently gained global recognition and popularity. 

In this article, along with explaining about NLP, I have added the top NLP project ideas on GitHub for you to start with.

Best Machine Learning and AI Courses Online

What is Natural Language Processing?

Natural Language Processing is all about facilitating human-to-machine communications. It aims to train computers to understand, interpret, and manipulate natural human languages. NLP draws inspiration from multiple disciplines such as Artificial Intelligence, Computer Science, and Computational Linguistics. 

Ads of upGrad blog

In-demand Machine Learning Skills

Humans communicate in their native languages such as English, Japanese, Spanish, etc., whereas computers speak in their native language, which is binary language. While computers cannot understand our natural human languages, machine language is mostly incomprehensible to most people.

This is where NLP enters to bridge the gap between human communication and computer understanding. Natural language processing empowers and trains computers to communicate with humans in their native language by helping them read texts, hear speech, interpret audio/text messages, measure sentiment, and much more. 

With the explosion of data brought about by the everyday interactions and transactions in the digital world, natural language processing has become more crucial for businesses. Thanks to NLP, companies can harness vast volumes of raw business data, social media chatter, etc., to make sense of data and take data-oriented decisions. 

In this article, we will list 12 NLP projects on GitHub to inspire you! Working on these projects will help enrich your domain knowledge and sharpen your real-world skills.

Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

Top GitHub NLP Projects 

1. Paraphrase Identification

Paraphrase detection is an NLP application that detects whether or not two different sentences have the same meaning. It is widely used in machine translation, question answering, information extraction/retrieval, text summarization, and natural language generation. 

This is a beginner-friendly project wherein you will build a paraphrase identification system that can accurately identify the similarities and differences between two textual entities (for example, sentences) by applying syntactic and semantic analyses on them.

2. Document Similarity

This is another beginner-friendly project that aims to quantify the similarities between two documents by using the Cosine similarity method. By finding the similarities between the two papers, this project will highlight the common topics of discussion. 

Cosine similarity converts two documents to vectors to compute the similarity between those vectors. It calculates the document similarities by taking the inner product space that measures the cosine angle between them.

Document similarity mentions the measure of documents with identical intent. Many examples of document similarity in NLP projects use the spaCy module in Python.

FYI: Free nlp course!

3. Text-Prediction

In this project, you’ll build an application that can predict the next word as you type words. The tools used to create this text prediction project include Natural Language Processing, Text Mining, and R’s suite of tools. 

The project uses a Maximum Likelihood estimator with Kneser Ney Smoothing as the prediction model. The prediction is designed on the collection of words stored in the database used for training the model. You can find the complete set of resources for this project on GitHub.

4. The Science of Genius 

This project is a part of the Science of Success project. The aim here is to determine if specific lexical factors can indicate the attention an article received, as measured by normalized citation indices, using a host of data science and NLP analytical tools. 

In the initial phases, this project focuses on studying the temporal and disciplinary variance in the length and syntactic features of article titles in the Web of Science – a dataset containing over 50 million articles published since 1900. The bigger picture is to create a quantitative model that can accurately estimate a scientific paper’s impact on the community.

5. Extract stock sentiment from news headlines

As the title suggests, you will use sentiment analysis on financial news headlines from Finviz to produce investing insights in this project. The sentiment analysis technique will help you understand and interpret the emotion behind the headlines and predict whether the present market situation is in favor of a particular stock or not.

6. Intelligent bot

This project involves building a smart bot that can parse and match results from a specific repository to answer questions. The bot uses WordNet for this operation. It weighs the context of a question concerning the tags in structured documents (such as headers, bold titles, etc.). Since it retains the context, you can ask related questions around the same topic. 

For instance, if you wish to query a Wikipedia article, you can use the template “Tell me about XYZ” and continue to ask similar questions once the context is established. Again, you can query a webpage by mentioning the page’s URL as the source like “” This works exceptionally well with FAQ and Q&A pages. 

Many tech companies are now using conversational bots, known as Chatbots, to communicate with their customers and solve their concerns. It saves time for both companies and customers. The users are informed first to mention all the details that the bots ask for. The customers are connected to a customer care executive only if human intervention is required in the NLP projects.

This project explains how to use the NLTK library in Python for text preprocessing and text classification. You can also learn how lemmatisation, Tokenization, and Parts-of-Speech tagging are executed in Python. This project familiarises you with the models like Decision trees, Bag-of-words, and Naive Bayes. You can go through an example chatbot application using Python for text classification using NTLK.

It is one of the best NLP projects because chatbots are used in many use cases in the service and hospitality industry. They are used as waiters at the restaurant or assistants for your device. Furthermore, intelligent chatbots are widely adopted for customer service in various sectors. Certain common examples include Alexa, Google Assistant, Siri, etc.

7. CitesCyVerse

The CitesCyVerse project is designed on The Science Citation Knowledge Extractor. CitesCyVerse is an open-source tool that leverages Machine Learning and NLP to help biomedical researchers understand how others use their work by analyzing the content in articles that cite them. By using ML and NLP, CitesCyVerse extracts the prominent themes and concepts discussed in the citing documents. This enables researchers to better understand how their work influences others in the scientific community. 

CitesCyVerse includes WordClouds that generates new clouds from similar words mentioned in citing papers. Also, it has Topics that lets you explore popular topics for articles and publications citing CyVerse. 

8. Data Science Capstone – Data processing scripts

In this Data Science capstone project, you will use data processing scripts to demonstrate data engineering instead of creating an n-gram model. These scripts can process the whole corpus to produce the n-grams and their counts. You can use this data to develop predictive text algorithms. 

To build this project, you will need a dual-core system (since most scripts are single-threaded) with at least 16GB RAM. As for the software requirements, you need – Linux (best if tested on Ubuntu 14.04), Python (version 2.7), NLTK (version 3.0), and NumPy.

Read: Natural Language Processing Project Ideas & Topics

9. Script generator

This is an exciting project where you’ll build RNNs to generate TV scripts for the popular show The Simpsons based on a script dataset of all the show’s 27 seasons. The RNNs will generate a new script for a specific scene shot at Moe’s Tavern. 

The script generator project is a part of Udacity’s Deep Learning Nanodegree. The project implementation is contained in: dlnd_tv_script_generation.ipynb

10. Reddit stock prediction

This project seeks to understand how social media posts impact the future prices of individual stocks. Here, we’ll study the impact of social media posts on Reddit, particularly investment focused subreddits/forums, using text analysis methods.

You can use the GitHub repository files to clean and apply sentiment analysis to Reddit posts/comments and use this data to create regression models. The repository also includes the code that you can use for the interactive web application utilized for visualizing real-time sentiment for specific stocks tickers and make relevant predictions.

11. Me_Bot

This is a fun NLP project where you will develop a bot named Me_Bot that will leverage your WhatsApp conversations, learn from them, and converse with you just as you would with another person. Essentially, the idea is to create a bot that speaks like you. 

You need to export your WhatsApp chats from your phone and train the bot on this data. To do so, you have to go to WhatsApp on your phone, choose any conversation, and export it from the app’s settings. Then you can shift the “.txt” file generated to the Me_Bot folder.

Also Read: Deep Learning vs NLP

12. Speech emotion analyzer

This project revolves around creating an ML model that can detect emotions from the conversations we have commonly in our daily life. The ML model can detect up to five different emotions and offer personalized recommendations based on your present mood.

This emotion-based recommendation engine is of immense value to many industries as they can use it to sell to highly targeted audience and buyer personas. For instance, online content streaming platforms can use this tool to offer customized content suggestions to individuals by reading their current mood and preference. 

Skills needed to become an NLP engineer:

  • The ability to implement NLP techniques in at least one of the famous deep learning frameworks (Tensorflow, PyTorch, etc.).
  • Knowledge of widely used deep learning and machine learning algorithms.
  • Deep understanding of statistical techniques used to measure the results of NLP algorithms.
  • Practical experience with cloud-based platforms like Azure and AWS
  • Experienced in using NLP algorithms
  • The knowledge of using natural language data to derive conclusions in the best NLP projects.  This contributes to business growth.
  • Design NLP-based applications to address customer requirements.

Key benefits of NLP projects on GitHub:

1. Perform large-scale analysis

NLP technology enables text analysis on all types of documents, social media data, online reviews, emails, and more. The NLP projects with source code can process large amounts of data in minutes or seconds. The manual analysis may take a few days or weeks. NLP tools allow scaling to fulfil your needs. So, you can use the required computational power.

2. Perform objective and precise analysis

Humans may commit mistakes when performing repetitive tasks like reading and assessing open-ended survey responses and other textual data. They may have in-built biases that can alter the results.

You can train NLP-powered tools to your business criteria and language, within a few steps.  So, after these tools are running, they perform more precisely than humans do. Moreover, NLP GitHub helps you to tweak and continue to train your models as the language or marketplace of your business develops.

3. Enhances customer satisfaction

NLP tools let you automatically analyse and categorise customer service tickets based on intent, topic, sentiment, urgency, etc. Subsequently, they directly route them to the relevant employee or department. Hence, using NLP projects with source code guarantees you customer satisfaction. Carrying out NLP analysis on customer satisfaction surveys assists you to determine how satisfied customers are at each stage of their journey.

4. In-depth market understanding

NLP hugely impacts marketing. When an NLP project with source code is used to understand your customer base’s language, you get an in-depth understanding of market segmentation. It also helps you to directly target your customers.

 5. Saves employees’ time

The NLP projects on GitHub automate processes and use data analysis to save human beings time. So, employees can focus on important tasks. It removes repetitive tasks so employees benefit from increased focus.

 6. Derive actionable insights

The unstructured data of online reviews, comments, and open survey responses need in-depth analysis. You must disintegrate the text to let machines easily understand it. You can implement an NLP project with source code that uses AI-guided NLP tools to simplify this task. These projects can help you dive deep into unstructured text for real-world, data-driven, instant actionable insights.

How does GitHub help in NLP projects?

The following points justify the use of GitHub in NLP projects:

1. Easy documentation

GitHub provides easy-to-understand documentation. Its guides and help section includes articles for nearly various topics related to Git.

2. It is a repository

Being a repository, helps you to showcase your work to the public. It is currently one of the biggest coding communities, so the NLP GitHub provides wide exposure for your project.

3. Manage open-source projects

Almost all open-source projects use GitHub. It is free to use if your NLP project is open source and contains an issue tracker and a wiki to easily include detailed documentation and get your project’s feedback.

4. Demonstrate your work

GitHub is the best tool for developers intending to attract recruiters. Many companies consider GitHub profiles while searching for new employees for their projects. The chances of getting recruited increase if your profile is available for NLP mini projects with source code.

5. Monitor changes in your code in different versions

Suppose multiple people collaborate on an NLP project. In such cases, it is difficult to monitor revisions like who modified when, what, and where those files are saved. GitHub tracks all the changes that are registered in the repository of NLP mini projects with source code.

Ads of upGrad blog

Popular AI and ML Blogs & Free Courses


With that, we have reached the end of our list. These 12 NLP projects on GitHub are excellent for honing your coding and project development skills. Most importantly, project building will help you master the nuances of Natural Language Processing, thereby strengthening your domain knowledge. 

If you wish to improve your NLP skills, you need to get your hands on these NLP projects. If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.



Blog Author
Meet Sriram, an SEO executive and blog content marketing whiz. He has a knack for crafting compelling content that not only engages readers but also boosts website traffic and conversions. When he's not busy optimizing websites or brainstorming blog ideas, you can find him lost in fictional books that transport him to magical worlds full of dragons, wizards, and aliens.
Get Free Consultation

Selectcaret down icon
Select Area of interestcaret down icon
Select Work Experiencecaret down icon
By clicking 'Submit' you Agree to  
UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Frequently Asked Questions (FAQs)

1What are the main challenges of Natural language processing?

Natural language processing has a lot of challenges. The major problem is the lack of availability of computational power. The current algorithms are created to run in off-line systems which need huge computational power and may take more time to complete the processing. The other problem is the available resources. Creating an algorithm that can work with a small amount of data is not easy and more time consuming. Another challenge is the availability of huge amounts of data that we need to process.

2Which NLP model gives the best accuracy?

The best accuracy for NLP models is achieved by passing the text through a series of increasingly sophisticated filters. The first layer is to remove stop words, punctuation, and numbers. After that, the entire text should be stemmed using a Porter stemmer, then all of the words should be replaced by their lemmatized forms. Then, the final step is to remove any words that do not exist in a vocabulary of 200,000 words.

3What is tokenization in NLP?

Tokenization is a process of breaking down a sentence into its constituent parts, called tokens. After applying the process, we can easily extract the meaning or intent of a sentence. Tokenization is done after doing sentence splitting. In NLP, the tokens are used for further processing, classification and representation of the sentence. Some of the NLP tasks that involve tokenization are language detection, POS tagging and parsing.

Explore Free Courses

Suggested Blogs

45+ Best Machine Learning Project Ideas For Beginners [2024]
Summary: In this Article, you will learn Stock Prices Predictor Sports Predictor Develop A Sentiment Analyzer Enhance Healthcare Prepare ML Algorith
Read More

by Jaideep Khare

21 May 2024

Top 15 IoT Interview Questions & Answers 2024 – For Beginners & Experienced
These days, the minute you indulge in any technology-oriented discussion, interview questions on cloud computing come up in some form or the other. Th
Read More

by Kechit Goyal

19 May 2024

40 Best IoT Project Ideas & Topics For Beginners 2024 [Latest]
In this article, you will learn the 40Exciting IoT Project Ideas & Topics. Take a glimpse at the project ideas listed below. Best Simple IoT Proje
Read More

by Kechit Goyal

19 May 2024

Top 22 Artificial Intelligence Project Ideas & Topics for Beginners [2024]
In this article, you will learn the 22 AI project ideas & Topics. Take a glimpse below. Best AI Project Ideas & Topics Predict Housing Price
Read More

by Pavan Vadapalli

18 May 2024

Image Segmentation Techniques [Step By Step Implementation]
What do you see first when you look at your selfie? Your face, right? You can spot your face because your brain is capable of identifying your face an
Read More

by Pavan Vadapalli

16 May 2024

6 Types of Regression Models in Machine Learning You Should Know About
Introduction Linear regression and logistic regression are two types of regression analysis techniques that are used to solve the regression problem
Read More

by Pavan Vadapalli

16 May 2024

How to Make a Chatbot in Python Step By Step [With Source Code]
Creating a chatbot in Python is an essential skill for modern developers looking to enhance user interaction and automate responses within application
Read More

by Kechit Goyal

13 May 2024

Artificial Intelligence course fees
Artificial intelligence (AI) was one of the most used words in 2023, which emphasizes how important and widespread this technology has become. If you
Read More

by venkatesh Rajanala

29 Feb 2024

Artificial Intelligence in Banking 2024: Examples & Challenges
Introduction Millennials and their changing preferences have led to a wide-scale disruption of daily processes in many industries and a simultaneous g
Read More

by Pavan Vadapalli

27 Feb 2024

Schedule 1:1 free counsellingTalk to Career Expert
footer sticky close icon