Data Science Vs Data Analytics: Difference Between Data Science and Data Analytics

The upsurge of Big Data has brought along two other buzzwords in the industry, Data Science and Data Analytics. Today, the whole world contributes to massive data growth in colossal volumes, hence the name, Big Data. The World Economic Forum states that by the end of 2020, the daily global data generation will reach 44 zettabytes. By 2025, this number will reach 463 exabytes of data!

Big Data includes everything – texts, emails, tweets, user searches (on search engines), social media chatter, data generated from IoT and connected devices – basically, everything we do online. The data generated every day via the digital world is so vast and complex that traditional data processing and analysis systems cannot handle it. Enter Data Science and Data Analytics

Since Big Data, Data Science, and Data Analytics are emerging technologies (they’re still evolving), we often use Data Science and Data Analytics interchangeably. The confusion primarily arises from the fact that both Data Scientists and Data Analysts work with Big Data. Even so, the difference between Data Analyst and Data Scientist is stark, fuelling the Data Science vs. Data Analytics debate. 

In this article, we’ll address the Data Science vs. Data Analytics debate, focusing on the difference between the Data Analyst and Data Scientist.

Data Science vs. Data Analytics: Two sides of the same coin

Data Science and Data Analytics deal with Big Data, each taking a unique approach. Data Science is an umbrella that encompasses Data Analytics. Data Science is a combination of multiple disciplines – Mathematics, Statistics, Computer Science, Information Science, Machine Learning, and Artificial Intelligence.

It includes concepts like data mining, data inference, predictive modeling, and ML algorithm development, to extract patterns from complex datasets and transform them into actionable business strategies. On the other hand, data analytics is mainly concerned with Statistics, Mathematics, and Statistical Analysis. 

While Data Science focuses on finding meaningful correlations between large datasets, Data Analytics is designed to uncover the specifics of extracted insights. In other words, Data Analytics is a branch of Data Science that focuses on more specific answers to the questions that Data Science brings forth. 

Data Science seeks to discover new and unique questions that can drive business innovation. In contrast, Data Analysis aims to find solutions to these questions and determine how they can be implemented within an organization to foster data-driven innovation. 

Data Science vs. Data Analytics: Job roles of Data Scientist and Data Analyst

Data Scientists and Data Analysts utilize data in different ways. Data Scientists use a combination of Mathematical, Statistical, and Machine Learning techniques to clean, process, and interpret data to extract insights from it. They design advanced data modeling processes using prototypes, ML algorithms, predictive models, and custom analysis. 

While data analysts examine data sets to identify trends and draw conclusions, Data Analysts collect large volumes of data, organize it, and analyze it to identify relevant patterns. After the analysis part is done, they strive to present their findings through data visualization methods like charts, graphs, etc. Thus, Data Analysts transform the complex insights into business-savvy language that both technical and non-technical members of an organization can understand. 

Both the roles perform varying degrees of data collection, cleaning, and analysis to gain actionable insights for data-driven decision making. Hence, the responsibilities of Data Scientists and Data Analysts often overlap. 

Responsibilities of Data Scientists

  • To process, clean, and validate the integrity of data.
  • To perform Exploratory Data Analysis on large datasets. 
  • To perform data mining by creating ETL pipelines. 
  • To perform statistical analysis using ML algorithms like logistic regression, KNN, Random Forest, Decision Trees, etc.
  • To write code for automation and build resourceful ML libraries
  • To glean business insights using ML tools and algorithms.
  • To identify new trends in data for making business predictions.

Responsibilities of Data Analysts

  • To collect and interpret data.
  • To identify relevant patterns in a dataset. 
  • To perform data querying using SQL.
  • To experiment with different analytical tools like predictive analytics, prescriptive analytics, descriptive analytics, and diagnostic analytics.
  • To use data visualization tools like Tableau, IBM Cognos Analytics, etc., for presenting the extracted information. 

Read: Career in Data Science

Data Science vs. Data Analytics: Core Skills 

Data Scientists must be proficient in Mathematics and statistics and expertise in programming (Python, R, SQL), Predictive Modelling, and Machine Learning. Data Analysts must be skilled in data mining, data modeling, data warehousing, data analysis, statistical analysis, and database management & visualization. Data Scientists and Data Analysts must be excellent problem solvers and critical thinkers. 

A Data Analyst must be:

  • Well-versed in Excel and SQL database.
  • Proficient in using tools like SAS, Tableau, Power BI, to name a few. 
  • Proficient in R or Python programming. 
  • Adept in data visualization.

A Data Scientist must be:

  • Well-versed in Probability & Statistics and Multivariate Calculus & Linear Algebra. 
  • Proficient in programming in R, Python, Java, Scala, Julia, SQL, and MATLAB.
  • Adept in database management, data wrangling, and Machine Learning.
  • Experienced in using Big Data platforms like Apache Spark, Hadoop, etc.

Checkout: Data Science Skills

Data Science vs. Data Analytics: Career Perspective 

The career pathway for Data Science and Data Analytics is quite similar. Data Science aspirants must have a strong educational foundation in Computer Science, or Software Engineering, or Data Science. Similarly, Data Analysts can pursue an undergraduate degree in Computer Science, or Information Technology, or Mathematics, or Statistics.

Typically, Data scientists are much more technical, requiring a mathematical mindset, and Data Analysts take on a statistical and analytical approach. From a career perspective, the role of a Data Analyst is more of an entry-level position. Aspirants with a strong background in statistics and programming can bag Data Analyst jobs in companies.

Usually, when hiring Data Analysts, recruiters prefer candidates who have 2-5 years of industry experience. On the contrary, Data Scientists are seasoned experts having more than ten years of experience. 

When talking about the salary, both Data Science and Data Analytics pay extremely well. The average salary of Data Scientists in India ranges between Rs. 8,13,500 – 9,00,000, while that of a Data Analyst is Rs. 4,24,400 – 5,04,000. And the best part about choosing to build a career in Data Science or Data Analytics is that their career trajectory is positive, continually scaling up. Read more on data scientist salary in India.


To conclude, even though Data Science and Data Analytics tread on similar lines, here’s a fair share of differences between Data Analyst and Data Scientist job roles. And the choice between these two largely depends on your interests and career goals.

If you are curious about learning data science to be in the front of fast-paced technological advancements, check out upGrad & IIIT-B’s PG Diploma in Data Science.

Prepare for a Career of the Future

Enroll Today

Leave a comment

Your email address will not be published. Required fields are marked *