- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
R For Data Science: Why Should You Choose R for Data Science?
Updated on 03 July, 2023
5.73K+ views
• 15 min read
Table of Contents
A powerful language in the world of Data Science and statistical computing, R is getting increasingly popular among students. After it was developed at the beginning of the 1990s, there have been endless efforts made to improve the user interface of the programming language.
In its journey from being a rudimentary text editor to becoming an interactive R Studio and then going on to be Jupyter Notebooks, R has kept the world Data Science communities engaged.
But learning R could be frustrating if it is not approached the right way. You are probably familiar with student reviews documenting the struggle with the language. There would be some who gave up midway, and there are still some who feel stuck and are desperately looking for a more structured way to approach it.
Whether you fall in these categories or are a fresher, you may be relieved to know that the language does have some inherent issues. So quit being harsh on yourself if you find it difficult. Usually, there is a clear mismatch between the source of your motivation and what you are learning.
Nobody wants to engage with dry practice problems and coding syntax because they love these rather boring activities. Absolutely not! People want to bear with this long, arduous process of mastering the syntax because it will allow them to graduate to the good stuff. However, the mountain of complicated and lengthy topics that you have to cover to be able to do something with it can be painful.
And if you have arrived here to find out if there is a more natural way to reach your goal, you are where you should be.
There is a more structured way to learn R and believe me it is worth learning! For anyone interested, there are some definite advantages of learning R over the other programming languages. Most importantly, the everyday tasks in Data Science can be conducted straightforwardly with the tidyverse ecosystem of R. The Data Visualisation in R programming language is both simple and powerful. It also has one of the friendliest and most inclusive online community which you will find very helpful.
If you want to learn R, you need to be very clear about what you are dealing with and get a comprehensive view of the big picture. That is exactly what we will be doing here. For starters you are expected to have a lot of doubts regarding R, starting from the basics of what it means and Why learn R? it to the more complex areas of data analysis, data manipulation and machine learning. Let us tackle the aspects one by one as we guide you towards the right way of learning R.
What is R?
The R Foundation has described r as “a language and environment for statistical computing and graphics.” That is to put it very simply because R is clearly a lot more than that.
Below is a list of characteristics that have become definitive of R as a programming language:
- A data analysis software: For anyone wanting to make sense of data, R can be used for Data Visualisation, statistical analysis, and predictive modeling.
- A programming language: R is an object-oriented language that provides operators, functions, and objects to make it possible to explore, visualize, and model data.
- An open-source software project: Although free, the numerical accuracy and standard of quality in R is very high. The open interfaces of the language allow its easy integration with other systems and applications.
- A statistical analysis environment: R is where some of the most cutting-edge research happens in predictive modeling and statistics. This is why R is often the first platform to offer a newly developed technique after it arrives. Even for the standard statistical methods, implementation in R is really easy.
- A community: With a large online community, R has about two million users! It should not be surprising that the R project leadership includes leading computer scientists and statisticians.
Read: R Tutorial for Beginners
Top Data Science Skills to Learn to upskill
SL. No | Top Data Science Skills to Learn | |
1 |
Data Analysis Online Courses | Inferential Statistics Online Courses |
2 |
Hypothesis Testing Online Courses | Logistic Regression Online Courses |
3 |
Linear Regression Courses | Linear Algebra for Analysis Online Courses |
Why should you learn R?
It is a common belief that learning Data Science requires you to learn Python or R. The reason why most people choose R is because it has some clear advantages over other programming languages.
- R has an easy style of coding.
- As it is open-source, you do not have to worry about paying any subscription fee or additional charges.
- It offers instant access to more than 7800 customized packages for different computation tasks.
- There is overwhelming community support and numerous forums if you need any help.
- It promises a high-performance computing experience only a few other platforms can offer.
- Most Data Science companies and analytics around the world view R as a valuable skill in an employee.
What is your motivation for learning R?
Before you even begin with R, it is important to be clear at least to yourself about why you would want to do it. It will be interesting to find out what your motivation is and what expectations you have from this journey. Believe it or not, this exercise might act as a necessary anchor for you when the going gets tough and in this case, even boring. Find out what kind of data you want to work with and the kind of projects you would want to build.
Do you want to analyze language? Computer vision? Predict stock market? Deal with sports statistics? What does the future scope of data science look like? As you may have noticed, these aspects require you to delve a little deeper than just “being a data scientist”. It is not about becoming a data scientist as much as what you want to do as a data scientist.
Defining your end goal will be crucial in laying down your path. When you already know what you are looking to do with the knowledge, chances of getting distracted with anything you will not need are bleak. You will be able to stay focused on the aspects that are crucial to your goal and in the process and filter out the necessary from the unnecessary on your own.
Read our popular Data Science Articles
upGrad’s Exclusive Data Science Webinar for you –
Watch our Webinar on The Future of Consumer Data in an Open Data Economy
Learn the basics in R
There is no learning R skipping this. Your first task would be to get familiar with the coding environment.
R Studio Interface
The first area is the R Console which displays the output of the code that is run. The next is R Script. This is the space where the codes have to be entered. The next is the R environment. It shows the additional set of external elements. It includes data sets, functions, vectors, variables, and so on. The last is the Graphical Output. These graphs are the result of exploratory data analysis.
Basic Computations
It is best, to begin with some simple calculations. You can also use the R console as an interactive calculator. You can perform experiments with combinations of different calculations and match their results. As you move forward, you can also access previous calculations.
Pressing the Up and Down arrow after clicking on R console will take you to your previous calculation by activating the commands previously executed. However, if there are too many calculations involved, you can simply create variables. Remember though that these variables have to be alphanumeric or just alphabets but not numeric.
Programming Essentials
Considered the building block of programming language, the better you get at this, the less trouble you will face in debugging. The five atomic or basic classes of objects in R are character, integer or whole numbers, numeric or real numbers, complex and logical (true or false). These objects can have different attributes like names or names of dimensions, dimensions, length, and class.
Also read: R Interview Questions & Answers
Data Types
The various data types in R includes vector (integer, numeric, etc.), data frames, list and matrices. Vector is the most basic object in this programming language. In order to create an empty vector, you will have to use vector(). Vector will consist of an object of the same class. It is also possible to create a vector by mixing objects of different classes.
It results in different types of objects being converted into one class. The list is a term used for a special type of vector. The list includes elements of various data types. Matrix is a name for a vector with a dimension attribute, i.e. introduced with a row and column. In the family of data types; however, the data frame is the most commonly used. This is because it stores tabular data.
Control Structures
A control structure is used to monitor the flow of commands or codes entailed within the function. A function is a command set created to automate a coding task that is repetitive. Students often find this section difficult to understand. Fortunately, there are many packages in R which compliment the task performed by these control structures.
Useful Packages
Out of some 7800 packages or more, there are surely some that you will need more than the others. Life in Data Science is much easier when you know them. Among the many packages available to import data readr, jsonlite, data.table, sqldf and RMySQL are more useful. When it comes to data visualization, ggplot2 is best for advanced graphics.
R truly boasts a fantastic collection of data manipulation packages and some of the exceptional ones are plyr, stringr, lubridate, dplyr and tidyr. Now, everything you need to create a machine learning model can be provided by caret. But you can also install packages by algorithms like gbm, rpart, randomForest and so on.
Get acquainted with Data Exploration and Data Manipulation
This is the section where you deep dive into the different stages of predictive modeling. The deep-diving necessitates that you pay attention to understanding this section exceptionally well. The only way you can learn to build practical models that will be both great and accurate is by exploring the data from start to finish.
It is this stage that forms the foundation of data manipulation, which follows data exploration. Data manipulation is data exploration at a more advanced level. Under this section, you will get acquainted with feature engineering, label encoding and one hot encoding.
Also learn about: Python vs R for Data Science
What is R for data science?
The area of data science has become the most well-liked in the twenty-first century. It’s because it’s vital to analyse the data and draw conclusions from it. Raw data is transformed into supplied data products by industries. The raw data must be processed using a number of crucial technologies in order to do this. One computer language that offers a comprehensive environment for information analysis, processing, transformation, and visualisation is R.
Focus is placed on the R language’s statistical and graphical features in order to explore employing it for data research. One must learn how to conduct statistical analyses and produce data visualisations in order to study R for data science. R’s statistical utilities make it simple to import, clean, and analyse data.
- The open-source, cost-free, and platform and operating system-compatible R programming language is used for data research.
- Since R is open-source software, it has a sizable user and developer community that contributes to its development.
- Users may explore, model, and visualise data using the objects, operators, and functions provided by the computer language R.
- R for data science is helpful in Big data handling, data analysis, and statistical modelling.
- An environment for statistical analysis is provided by R. It has graphing and statistical capabilities. This implies that classification, clustering, statistical testing, and linear and nonlinear modelling may all be done using R programming for data science.
Why do we use R for Data Science?
The development of Big Data has made the area of data science one of the most well-liked nowadays. Businesses have rich data, and there is a clear need to use the knowledge in this data to provide insightful understandings for decision-making. With the use of numerous technologies, a good and thorough data analysis is necessary to provide these insights. You should Excel R data science because R is a well-liked programming language used for data analysis, processing, transformation, and visualisation, much like Python.
Learn Predictive Modeling and Machine Learning
Mostly for starters, Machine Learning defines Data Science. It is where you deal with the topic, and it includes Decision Trees in R, Regression and Random Forest. This part will require you to deal very deeply with Regression, hence make sure you are clear with the basics.
You will come across Linear or Multiple Regression, Logistic Regression and related concepts. A decision tree is a term for a decisions and consequences model that is arranged in a tree-like fashion. It is a decision support tool that includes utility, event outcomes and resource costs. Random forests are also known as random decision forests, and they are created by multiple decision trees.
Move on to Structured Projects
Once you are equipped with the necessary knowledge covered under these broad categories, you will be able to move on to structured projects. It is probably the only way to master an art. When you apply your knowledge, your experience broadens as you encounter practical problems and device solutions on the go. This will also help you build a portfolio that you can present to your future employers regarding your practical experience in the field.
Remember, it is not uncommon to get frustrated at this stage as you face one hurdle after another. It is the part you have been preparing yourself for and do not be surprised if this seems more challenging than everything you have done till now. It usually happens because candidates cannot control their excitement to take up challenges and often dive into unique projects. Honestly, at this stage, you may not be ready for something like that, and it is best to stick to more structured projects that you are familiar with.
Build projects and continue learning
After working with some structured projects falling within the zone of familiarity, you can now venture into unknown territories. The expertise will only come with practice, and the idea is that once you have practiced with elements you were comfortable with, it is time to move beyond the comfort zone. It is where you test how much you have learned. This experience will not only show you how far you have come, but it will also reveal your strengths and weaknesses.
As you take up interesting Data Science projects, you will understand which are the areas you are still struggling with and need to focus on. Referring to resources for guidance and seeking the help of your mentors and field experts will only add to your knowledge of new methods, approaches, and techniques. This is where you benefit from upGrad because we see you through your journey from obtaining practical and theoretical knowledge to becoming a skilled Data Scientist.
Hence, if you get stuck, all you have to do is reach out. As you take up unique Data Science projects, you will understand which are the areas you are still struggling with and need to focus on. Referring to resources for guidance and seeking the help of your mentors and field experts will only add to your knowledge of new methods, approaches, and techniques.
It is where you benefit from upGrad because we see you through your journey from obtaining practical and theoretical knowledge to becoming a skilled Data Scientist. Hence, if you get stuck, all you have to do is reach out.
How Can R Be Used Effectively for Data Science?
The data science process may be completed using a variety of computer languages, but R makes analysing and gathering data exciting and distinctive. R for data science is a sophisticated language that can carry out several intricate statistical calculations. Data scientists and business executives utilise it often as a result in a variety of sectors, including academia and industry.
Additionally, R for data science visualises the data, making it simple to grasp and interpret. R also offers a variety of alternatives for sophisticated data analysis techniques including machine learning, algorithms, etc. Last but not least, R makes it simple to carry out different data science procedures since it excels at data wrangling, data visualisation, statistical computations without vectors, and web applications, among other things, making it simple to gather and analyse large volumes of data quickly.
Conclusion
Usually in R, learning to work on a new project often means that you are learning to use a new package because mostly there will be packages exclusively meant for the kind of work you are doing. This is the knowledge you get with experience, which eventually makes you an expert. You can select the projects you want to work on based on your preferences which we asked you to settle at the very beginning.
Ramp up the level of difficulty as you progress because the secret to success with a programming language is never to stop learning. Just like a spoken language, you can reach a place where you are fluent and comfortable, but there will still be a lot to learn.
Learn data science courses from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Frequently Asked Questions (FAQs)
1. Why is R considered to be a good choice for data science?
R is a highly preferred programming language for data science because it provides the users with an environment for analyzing, processing, transforming, and also visualizing the available information. R language also provides extensive support for statistical modeling.
Earlier, R was only used for academic purposes, but it became widely used in industries as well because of its sea of packages that can help out in different forms of disciplines like biology, astronomy, and much more. Other than that, R also provides plenty of options of advanced data analytics for the development of machine learning algorithms and prediction models, along with different packages for image processing. This is why R is considered to be a preferred choice by data scientists.
2. What are the key differences between R and Python?
Both R and Python are considered to be really useful in data science. Python provides a more general approach in data science, while R is usually utilized for statistical analysis. On one hand, the primary objective of R is statistics and data analysis, while the main work of Python is production and deployment.
Python is pretty simple and easy to learn because of its libraries and simple syntax, while R will be difficult in the beginning. The users of the R programming language are usually R&D professionals and scholars, while those of Python are developers and programmers.
3. Which one is easier to learn – R or Python?
Both R and Python are considered to be pretty easy to learn when it comes to programming languages. If you are familiar with the concepts of Java and C++, then you will find it pretty easy to adapt with Python, while if you are more on the side of math and statistics, then R will be a bit easier for you to learn.
In general, we can say that Python is a bit easier to learn and adapt to because of its easy-to-read syntax.