Explore Courses
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Birla Institute of Management Technology Birla Institute of Management Technology Post Graduate Diploma in Management (BIMTECH)
  • 24 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Popular
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science & AI (Executive)
  • 12 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
University of MarylandIIIT BangalorePost Graduate Certificate in Data Science & AI (Executive)
  • 8-8.5 Months
upGradupGradData Science Bootcamp with AI
  • 6 months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
OP Jindal Global UniversityOP Jindal Global UniversityMaster of Design in User Experience Design
  • 12 Months
Popular
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Rushford, GenevaRushford Business SchoolDBA Doctorate in Technology (Computer Science)
  • 36 Months
IIIT BangaloreIIIT BangaloreCloud Computing and DevOps Program (Executive)
  • 8 Months
New
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Popular
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
Golden Gate University Golden Gate University Doctor of Business Administration in Digital Leadership
  • 36 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
Popular
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
Bestseller
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
IIIT BangaloreIIIT BangalorePost Graduate Certificate in Machine Learning & Deep Learning (Executive)
  • 8 Months
Bestseller
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in AI and Emerging Technologies (Blended Learning Program)
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
ESGCI, ParisESGCI, ParisDoctorate of Business Administration (DBA) from ESGCI, Paris
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration From Golden Gate University, San Francisco
  • 36 Months
Rushford Business SchoolRushford Business SchoolDoctor of Business Administration from Rushford Business School, Switzerland)
  • 36 Months
Edgewood CollegeEdgewood CollegeDoctorate of Business Administration from Edgewood College
  • 24 Months
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with Concentration in Generative AI
  • 36 Months
Golden Gate University Golden Gate University DBA in Digital Leadership from Golden Gate University, San Francisco
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Deakin Business School and Institute of Management Technology, GhaziabadDeakin Business School and IMT, GhaziabadMBA (Master of Business Administration)
  • 12 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science (Executive)
  • 12 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityO.P.Jindal Global University
  • 12 Months
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (AI/ML)
  • 36 Months
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDBA Specialisation in AI & ML
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
New
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGrad KnowledgeHutupGrad KnowledgeHutAzure Administrator Certification (AZ-104)
  • 24 Hours
KnowledgeHut upGradKnowledgeHut upGradAWS Cloud Practioner Essentials Certification
  • 1 Week
KnowledgeHut upGradKnowledgeHut upGradAzure Data Engineering Training (DP-203)
  • 1 Week
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
Loyola Institute of Business Administration (LIBA)Loyola Institute of Business Administration (LIBA)Executive PG Programme in Human Resource Management
  • 11 Months
Popular
Goa Institute of ManagementGoa Institute of ManagementExecutive PG Program in Healthcare Management
  • 11 Months
IMT GhaziabadIMT GhaziabadAdvanced General Management Program
  • 11 Months
Golden Gate UniversityGolden Gate UniversityProfessional Certificate in Global Business Management
  • 6-8 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
IU, GermanyIU, GermanyMaster of Business Administration (90 ECTS)
  • 18 Months
Bestseller
IU, GermanyIU, GermanyMaster in International Management (120 ECTS)
  • 24 Months
Popular
IU, GermanyIU, GermanyB.Sc. Computer Science (180 ECTS)
  • 36 Months
Clark UniversityClark UniversityMaster of Business Administration
  • 23 Months
New
Golden Gate UniversityGolden Gate UniversityMaster of Business Administration
  • 20 Months
Clark University, USClark University, USMS in Project Management
  • 20 Months
New
Edgewood CollegeEdgewood CollegeMaster of Business Administration
  • 23 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
KnowledgeHut upGradKnowledgeHut upGradBackend Development Bootcamp
  • Self-Paced
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 5 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
upGradupGradUI/UX Bootcamp
  • 3 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
upGradupGradDigital Marketing Accelerator Program
  • 05 Months

Data Mining Architecture: Components, Types & Techniques

Updated on 28 February, 2024

11.55K+ views
8 min read
Data Mining Architecture

Introduction

Data mining is the process in which information that was previously unknown, which could be potentially very useful, is extracted from a very vast dataset. Data mining architecture or architecture of data mining techniques is nothing but the various components which constitute the entire process of data mining. Learn data science to gain expertise in data mining and remain competitive in the market. 

Data Mining Architecture Components

Let’s take a look at the components which make the entire data mining architecture. 

1. Sources of Data

The place where we get our data to work upon is known as the data source or the source of the data. There are many documentations presented, and one might also argue that the whole World Wide Web (WWW) is a big data warehouse. The data can be anywhere, and some might reside in text files, a standard spreadsheet document, or any other viable source like the internet.

2. Database or Data Warehouse Server

The server is the place that holds all the data which is ready to be processed. The fetching of data works upon the user’s request, and, thus, the actual datasets can be very personal.

3. Data Mining Engine

The field of data mining is incomplete without what is arguably the most crucial component of it, known as a data mining engine. It usually contains a lot of modules that can be used to perform a variety of tasks. The tasks which can be performed can be association, characterization, prediction, clustering, classification, etc.

4. Modules for Pattern Evaluation

This module of the architecture is mainly employed to measure how interesting the pattern that has been devised is actually. For the evaluation purpose, usually, a threshold value is used. Another critical thing to note here is that this module has a direct link of interaction with the data mining engine, whose main aim is to find interesting patterns. 

Our learners also read: Free Python Course with Certification

upGrad’s Exclusive Data Science Webinar for you –

Transformation & Opportunities in Analytics & Insights

5. GUI or Graphical User Interface

As the name suggests, this module of the architecture is what interacts with the user. GUI serves as the much-needed link between the user and the system of data mining. GUI’s main job is to hide the complexities involving the entire process of data mining and provide the user with an easy to use and understand module which would allow them to get an answer to their queries in an easy to understand fashion.

6. Knowledge Base

The base of all the knowledge is vital for any data mining architecture. The knowledge base is usually used as the guiding beacon for the pattern of the results. It might also contain the data from what the users have experienced. The data mining engine interacts with the knowledge base often to both increase the reliability and accuracy of the final result. Even the pattern evaluation module has a link to the knowledge base. It interacts with the knowledge base on a regular interval to get various inputs and updates from it.

Read: 16 Data Mining Projects Ideas & Topics For Beginners

Types of data mining architecture

There are four different types of architecture which have been listed below:

1. No-coupling Data Mining

No-coupling architecture typically does not make the use of any functionality of the database. What no-coupling usually does is that it retrieves the required data from one or one particular source of data. That’s it; this type of architecture does not take any advantages whatsoever of the database in question. Because of this specific issue, no-coupling is usually considered a poor choice of architecture for the system of data mining. Still, it is often used for elementary processes involving data mining.

2. Loose coupling Data Mining

Loose coupling data mining process employs a database to do the bidding of retrieval of the data. After it is done finding and bringing the data, it stores the data into these databases. This type of architecture is often used for memory-based data mining systems that do not require high scalability and high performance.

3. Semi-Tight coupling Data Mining

Semi-Tight architecture makes uses of various features of the warehouse of data. These features of data warehouse systems are usually used to perform some tasks pertaining to data mining. Tasks like indexing, sorting, and aggregation are the ones that are generally performed.

4. Tight-coupling Data Mining

The tight-coupling architecture differs from the rest in its treatment of data warehouses. Tight-coupling treats the data warehouse as a component to retrieve the information. It also makes use of all the features that you would find in the databases or the data warehouses to perform various data mining tasks. This type of architecture is usually known for its scalability, integrated information, and high performance. There are three tiers of this architecture which are listed below:

5. Data layer

Data layer can be defined as the database or the system of data warehouses. The results of data mining are usually stored in this data layer. The data that this data layer houses can then be further used to present the data to the end-user in different forms like reports or some other kind of visualization.

6. Data Mining Application layer

The job of Data mining application layer is to find and fetch the data from a given database. Usually, some data transformation has to be performed here to get the data into the format, which has been desired by the end-user. 

7. Front end layer

This layer has virtually the same job as a GUI. The front-end layer provides intuitive and friendly interaction with the user. The result of the data mining is usually visualized as some form or the other to the user by making use of this front-end layer.

Also read: What is Text Mining: Techniques and Applications

Techniques of Data Mining

 There are several data mining techniques which are available for the user to make use of; some of them are listed below:

1. Decision Trees

Decision trees are the most common technique for the mining of the data because of the complexity or lack thereof in this particular algorithm. The root of the tree is a condition. Each answer then builds upon this condition by leading us in a specific way, which will eventually help us to reach the final decision.

2. Sequential Patterns

Sequential patterns are usually used to discover events that occur regularly or trends that can be found in any transactional data.

3. Clustering

Clustering is a technique that automatically defines different classes based on the form of the object. The classes thus formed will then be used to place other similar kinds of objects in them.

4. Prediction

This technique is usually employed when we are required to accurately determine an outcome that is yet to occur. These predictions are made by accurately establishing the relationship between independent and dependent entities.

5. Classification

This technique is based out of a similar machine learning algorithm with the same name. This technique of classification is used to classify each item in question into predefined groups by making use of mathematical techniques such as linear programming, decision trees, neural networks, etc.

The Cornerstone: Delving into Data Warehouse Architecture

Imagine a colossal library, meticulously organized and readily accessible, housing all your organizational data. This is the essence of a data warehouse, the foundational pillar of data mining architecture. Structured for efficient querying and analysis, it typically utilizes a star schema or snowflake schema to optimize data retrieval and performance. These schemas act as intricate maps, allowing data analysts to navigate with ease through the vast landscapes of information.

Navigating the Labyrinth: OLAP Architecture in Data Mining – Unveiling Hidden Dimensions

OLAP, short for Online Analytical Processing, empowers users to slice and dice data from various angles, shedding light on hidden patterns and insights. This OLAP architecture within the data warehouse leverages multidimensional cubes that enable fast retrieval and analysis of large datasets. Think of these cubes as Rubik’s cubes of information, where each side reveals a different perspective, granting invaluable insights for informed decision-making.

Building the Engine: Demystifying the Architecture of a Typical Data Mining System

Now, let’s delve into the core functionality of data mining itself. A typical data mining system architecture comprises five key stages, each playing a crucial role in the transformation of raw data into actionable insights:

Data Acquisition: Data, the lifeblood of the system, is collected from diverse sources, including internal databases, external feeds, and internet-of-things (IoT) sensors. Imagine data flowing in like rivers, a vast lake of information ready to be explored.

Data Preprocessing: Raw data can be messy and inconsistent, like unrefined ore. This stage involves cleansing, transforming, and integrating the data into a consistent format for further analysis. It’s akin to refining the ore, removing impurities and preparing it for further processing.

Data Mining: Specialized algorithms, the skilled miners of the information world, are applied to uncover patterns, trends, and relationships within the preprocessed data. These algorithms work like sophisticated tools, sifting through the information to unveil hidden gems of knowledge.

Pattern Evaluation: Extracted patterns, like potential diamonds unearthed from the mine, are carefully assessed for their validity, significance, and applicability. This stage involves rigorous testing and analysis to ensure the extracted insights are genuine and valuable.

Deployment: Finally, the extracted insights are presented in a user-friendly format, such as reports, dashboards, or visualizations, empowering informed decision-making. Imagine these insights as polished diamonds, presented in a way that stakeholders can readily understand and utilize.

Essential Components: Unveiling the Data Warehouse Components in Data Mining

Several crucial components, each playing a distinct role, work in concert within the data warehouse architecture:

Staging Area: This serves as a temporary haven for raw data, where it undergoes initial processing and preparation before being loaded into the main warehouse. Think of it as a sorting room, where data is organized and categorized before being placed on the shelves.

ETL (Extract, Transform, Load): These processes act as the workhorses of the system, extracting data from various sources, transforming it into a consistent format, and loading it into the warehouse. Imagine ETL as a conveyor belt, efficiently moving and preparing the data for further analysis.

Metadata Repository: This acts as the data dictionary, storing information about the data itself, including its structure, meaning, and lineage. It’s like a detailed index in the library, allowing users to easily find and understand the information they need.

Query Tools: These empower users to interact with the data, ask questions, and extract insights. They are the tools that allow users to explore the library, search for specific information, and gain knowledge.

Future-Proofing with Innovation: AI and Machine Learning Integration – Expanding the Horizons

The realm of data mining is constantly evolving, driven by advancements in technology. The integration of AI and machine learning techniques promises even more sophisticated capabilities. These advanced algorithms can handle complex and unstructured data sources, like social media text and sensor data, unlocking deeper insights previously hidden within the information labyrinth. Imagine AI and machine learning as powerful new tools, opening up previously inaccessible data sources and revealing even more valuable gems of knowledge.

Ethics and Transparency: Guiding Principles for Responsible Data Mining

As data mining becomes more pervasive, ethical considerations take center stage. Responsible data practices, transparency in data collection and algorithm usage, and adherence to data privacy regulations are paramount to building trust and ensuring ethical data practices. Imagine navigating the information labyrinth responsibly, ensuring ethical treatment of the data while still extracting valuable insights.

Democratizing Insights: Augmented Analytics – Empowering Everyone

The rise of augmented analytics platforms is revolutionizing data accessibility. These platforms leverage natural language processing and automated model generation, empowering non-technical users to independently explore and analyze data, fostering a data-driven culture within organizations. Imagine everyone having access to a personal data analysis assistant, simplifying complex tasks and making insights readily available.

Beyond the Horizon: Exploring the Future of Data Mining

The future of data mining holds tremendous potential for innovation and growth, driven by advancements in technology and evolving business needs:

Real-time Analytics: With the proliferation of IoT devices and sensors,data warehouse architecture in data mining will increasingly focus on real-time analytics, enabling organizations to respond promptly to changing market conditions, customer preferences, and emerging trends. Imagine having a real-time pulse on your business, constantly adapting and optimizing based on the latest data insights.

Privacy-Preserving Techniques: To address privacy concerns, data mining algorithms will incorporate privacy-preserving techniques such as differential privacy, federated learning, and homomorphic encryption, ensuring compliance with data protection regulations while still extracting valuable insights. Imagine unlocking insights responsibly, safeguarding individual privacy while still gaining valuable knowledge.

Interdisciplinary Applications: Data mining will continue to transcend traditional boundaries, finding applications in diverse fields such as healthcare, finance, transportation, and urban planning. Imagine data insights revolutionizing various industries, leading to breakthroughs and advancements in different sectors.

Augmented Analytics: The rise of augmented analytics platforms will continue to empower non-technical users and democratize data exploration. Imagine a future where everyone, regardless of technical expertise, can leverage data to make informed decisions and contribute to organizational success.

Conclusion

 Due to the leaps and bounds made in the field of technology, the power and prowess of processing have significantly increased. This increment in technology has enabled us to go further and beyond the traditionally tedious and time-consuming ways of data processing, allowing us to get more complex datasets to gain insights that were earlier deemed impossible. This gave birth to the field of data mining. Data mining is a new upcoming field that has the potential to change the world as we know it.

Data mining architecture or architecture of data mining system is how data mining is done. Thus, having knowledge of architecture is equally, if not more, important to having knowledge about the field itself.

If you are curious to learn about data mining architecture, data science, check out IIIT-B & upGrad’s Executive PG Programme in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.

Frequently Asked Questions (FAQs)

1. What is the future scope of data mining?

Data Mining is an immensely useful procedure for extracting previously unknown information from a huge chunk of data. Extracting actionable information is necessary for the growth and benefit of every business or organization. Data mining is the process that makes the decision-making process easier for organizations based on the available data.
This is why there is a huge demand for data mining analysts but there are not enough qualified professionals to take up the job. With data being the most important factor driving business decisions, there is a huge scope for data mining professionals. So, if you are thinking about building a career in the field of data mining, then you are definitely looking towards a bright future.

2. What are the top 5 data mining methods?

In today's world, we are all surrounded by data from every side. This situation is going to become more intense with time. Knowledge is deeply buried inside this data, and it is necessary to implement certain strategies that can clear out the noise and provide actionable information from the chunk of data. Without actionable information, data is said to be useless and ineffective.
The top 5 data mining methods for creating optimal results for all the datasets are Classification analysis, Association rule learning, Clustering analysis, Regression analysis, and Anomaly or outlier detection.

3. What are the different applications of data mining?

Data is present everywhere, and this is why data mining is being widely used in different sectors. With everything moving towards digitization, organizations' amount of data being collected and stored is exponentially increasing. Data mining systems are generated in every sector, while there are still plenty of challenges these systems face.
The trend of data mining is at an entirely new level, and its applications are seen in almost every industry. Some of the key industries where the applications of data mining are widely seen are financial data analysis, retail industry, telecommunication industry, biological data analysis, and intrusion detection.

Did you find this article helpful?

Rohit Sharma

Rohit Sharma is the Program Director for the UpGrad-IIIT Bangalore, PG Diploma Data Analytics Program.

See More


SUGGESTED BLOGS

Announcing PG Diploma in Data Analytics with IIIT Bangalore

5.64K+

Announcing PG Diploma in Data Analytics with IIIT Bangalore

Data is in abundance and for corporations, big or small, investment in data analytics is no more a discretionary spend, but a mandatory investment for competitive advantage. In fact, by 2019, 90% of large organizations will have a Chief Data Officer. Indian data analytics industry alone is expected to grow to $2.3 billion by 2017-18. UpGrad’s survey also shows that leaders across industries are looking at data as a key growth driver in the future and believe that the data analytics wave is here to stay. Learn Data Science Courses online at upGrad This growth wave has created a critical supply-demand imbalance of professionals with the adequate know-how of making data-driven decisions. The scarcity exists across Data Engineers, Data Analysts and becomes more acute when it comes to Data Scientists. As a result of this imbalance, India will face an acute shortage of at least 2 lac data skilled professionals over the next couple of years. upGrad’s Exclusive Data Science Webinar for you – Transformation & Opportunities in Analytics & Insights document.createElement('video'); https://cdn.upgrad.com/blog/jai-kapoor.mp4 In pursuit of bridging this gap, UpGrad has partnered with IIIT Bangalore, to deliver a first-of-its-kind online PG Diploma program in Data Analytics, which over the years will train 10,000 professionals. Offering a perfect mix of academic rigor and industry relevance, the program is meant for all those working professionals who wish to accelerate their career in data analytics. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? Top Data Science Skills to Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Programs Inferential Statistics Programs 2 Hypothesis Testing Programs Logistic Regression Programs 3 Linear Regression Programs Linear Algebra for Analysis Programs The Advanced Certificate Programme in Data Science at UpGrad will include modules in Statistics, Data Visualization & Business Intelligence, Predictive Modeling, Machine Learning, and Big Data. Additionally, the program will feature a 3-month project where students will work on real industry problems in a domain of their choice. The first batch of the program is scheduled to start on May 2016.   Explore our Popular Data Science Certifications Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Certifications Our learners also read: Learn Python Online Course Free
Read More

by Rohit Sharma

08 Feb'16
How Organisations can Benefit from Bridging the Data Scientist Gap

5.09K+

How Organisations can Benefit from Bridging the Data Scientist Gap

Note: The article was originally written for LinkedIn Pulse by Sameer Dhanrajani, Business Leader at Cognizant Technology Solutions. Data Scientist is one of the fastest-growing and highest paid jobs in technology industry. Dr. Tara Sinclair, Indeed.com’s chief economist, said the number of job postings for “data scientist” grew 57% year-over-year in Q1:2015. Yet, in spite of the incredibly high demand, it’s not entirely clear what education someone needs to land one of these coveted roles. Do you get a degree in data science? Attend a bootcamp? Take a few Udemy courses and jump in? Learn data science to gain edge over your competitors It depends on what practice you end up it. Data Sciences has become a widely implemented phenomenon and multiple companies are grappling to build a decent DS practice in-house. Usually online courses, MOOCs and free courseware usually provides the necessary direction for starters to get a clear understanding, quickly for execution. But Data Science practice, which involves advanced analytics implementation, with a more deep-level exploratory approach to implementing Data Analytics, Machine Learning, NLP, Artificial Intelligence, Deep Learning, Prescriptive Analytics areas would require a more establishment-centric, dedicated and extensive curriculum approach. A data scientist differs from a business analyst ;data scientist requires dwelling deep into data and gathering insights, intelligence and recommendations that could very well provide the necessary impetus and direction that a company would have to take, on a foundational level. And the best place to train such deep-seeded skill would be a university-led degree course on Data Sciences. It’s a well-known fact that there is a huge gap between the demand and supply of data scientist talent across the world. Though it has taken some time, but educationalists all across have recognized this fact and have created unique blends of analytics courses. Every month, we hear a new course starting at a globally recognized university. Data growth is headed in one direction, so it’s clear that the skills gap is a long-term problem. But many businesses just can’t wait the three to five years it might take today’s undergrads to become business-savvy professionals. Hence this aptly briefs an alarming need of analytics education and why universities around the world are scrambling to get started on the route towards being analytics education leaders. Obviously, the first mover advantage would define the best courses in years to come i.e. institutes that take up the data science journey sooner would have a much mature footing in next few years and they would find it easier to attract and place students. Strategic Benefits to implementing Data Science Degrees Data science involves multiple disciplines The reason why data scientists are so highly sought after, is because the job is really a mashup of different skill sets and competencies rarely found together. Data scientists have tended to come from two different disciplines, computer science and statistics, but the best data science involves both disciplines. One of the dangers is statisticians not picking up on some of the new ideas that are coming out of machine learning, or computer scientists just not knowing enough classical statistics to know the pitfalls. Even though not everything can be taught in a Degree course, universities should clearly understand the fact that training a data science graduate would involve including multiple, heterogeneous skills as curriculum and not one consistent courseware. They might involve computer science, mathematics, statistics, business understanding, insight interpretation, even soft skills on data story telling articulation. Beware of programs that are only repackaging material from other courses Because data science involves a mixture of skills — skills that many universities already teach individually — there’s a tendency toward just repackaging existing courses into a coveted “data science” degree. There are mixed feelings about such university programs. It seems to me that they’re more designed to capitalize on the fact that the demand is out there than they are in producing good data scientists. Often, they’re doing it by creating programs that emulate what they think people need to learn. And if you think about the early people who were doing this, they had a weird combination of math and programming and business problems. They all came from different areas. They grew themselves. The universities didn’t grow them. Much of a program’s value comes from who is creating and choosing its courses. There have been some decent course guides in the past from some universities, it’s all about who designs the program and whether they put deep and dense content and coverage into it, or whether they just think of data science as exactly the same as the old sort of data mining. The Theories on Theory A recurring theme throughout my conversations was the role of theory and its extension to practical approaches, case studies and live projects. A good recommendation to aspiring data scientists would be to find a university that offers a bachelor’s degree in data science. Learn it at the bachelor’s level and avoid getting mired in only deep theory at the PostGrad level. You’d think the master’s degree dealing with mostly theory would be better, but I don’t think so. By the time you get to the MS you’re working with the professors and they want to teach you a lot of theory. You’re going to learn things from a very academic point of view, which will help you, but only if you want to publish theoretical papers. Hence, universities, especially those framing a PostGrad degree in Data Science should make sure not to fall into orchestrating a curriculum with a long drawn theory-centric approach. Also, like many of the MOOCs out there, a minimum of a capstone project would be a must to give the students a more pragmatic view of data and working on it. It’s important to learn theory of course. I know too many ‘data scientists’ even at places like Google who wouldn’t be able to tell you what Bayes’ Theorem or conditional independence is, and I think data science unfortunately suffers from a lack of rigor at many companies. But the target implementation of the students, which would mostly be in corporate houses, dealing with real consumer or organizational data, should be finessed using either simulated practical approach or with collaboration with Data Science companies to give an opportunity to students to deal with real life projects dealing with data analysis and drawing out actual business insights. Our learners also read: Free Python Course with Certification upGrad’s Exclusive Data Science Webinar for you – ODE Thought Leadership Presentation document.createElement('video'); https://cdn.upgrad.com/blog/ppt-by-ode-infinity.mp4 Explore our Popular Data Science Online Certifications Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Online Certifications Don’t Forget About the Soft Skills In an article titled The Hard and Soft Skills of a Data Scientist, Todd Nevins provides a list of soft skills becoming more common in data scientist job requirements, including: Manage teams and projects across multiple departments on and offshore. Consult with clients and assist in business development. Take abstract business issues and derive an analytical solution. Top Data Science Skills You Should Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Online Certification Inferential Statistics Online Certification 2 Hypothesis Testing Online Certification Logistic Regression Online Certification 3 Linear Regression Certification Linear Algebra for Analysis Online Certification The article also emphasizes the importance of these skills, and criticizes university programs for often leaving these skills out altogether: “There’s no real training about how to talk to clients, how to organize teams, or how to lead an analytics group.” Data science is still a rapidly evolving field and until the norms are more established, it’s unlikely every data scientist will be following the same path. A degree in data science will definitely act as the clay to make your career. But the part that really separates people who are successful from that are not is just a core curiosity and desire to answer questions that people have — to solve problems. Don’t do it because you think you can make a lot of money, chances are by the time you’re trained, you either don’t know the right stuff or there’s a hundred other people competing for the same position, so the only thing that’s going to stand out is whether you really like what you’re doing. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences?
Read More

by upGrad

03 May'16
Computer Center turns Data Center; Computer Science turns Data Science

5.13K+

Computer Center turns Data Center; Computer Science turns Data Science

(This article, written by Prof. S. Sadagopan, was originally published in Analytics India Magazine) There is an old “theory” that talks of “power shift” from “carrier” to “content” and to “control” as industry matures. Here are some examples In the early days of Railways, “action” was in “building railroads”; the “tycoons” who made billions were those “railroad builders”. Once enough railroads were built, there was more action in building “engines and coaches” – General Electric and Bombardier emerged; “power” shifted from “carrier” to “content”; still later, action shifted to “passenger trains” and “freight trains” – AmTrak and Delhi Metro, for example, that used the rail infrastructure and available engines and coaches / wagons to offer a viable passenger / goods transportation service; power shifted from “content” to “control”. The story is no different in the case of automobiles; “carrier” road-building industry had the limelight for some years, then the car and truck manufacturers – “content” – GM, Daimler Chrysler, Tata, Ashok Leyland and Maruti emerged – and finally, the “control”, transport operators – KSRTC in Bangalore in the Bus segment to Uber and Ola in the Car segment. In fact, even in the airline industry, airports become the “carrier”, airplanes are the “content” and airlines represent the “control” Learn data science courses from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career. It is a continuum; all three continue to be active – carrier, content and control – it is just the emphasis in terms of market and brand value of leading companies in that segment, profitability, employment generation and societal importance that shifts. We are witnessing a similar “power shift” in the computer industry. For nearly six decades the “action” has been on the “carrier”, namely, computers; processors, once proprietary from the likes of IBM and Control Data, then to microprocessors, then to full blown systems built around such processors – mainframes, mini computers, micro computers, personal computers and in recent times smartphones and Tablet computers. Intel and AMD in processors and IBM, DEC, HP and Sun dominated the scene in these decades. A quiet shift happened with the arrival of “independent” software companies – Microsoft and Adobe, for example and software services companies like TCS and Infosys. Along with such software products and software services companies came the Internet / e-Commerce companies – Yahoo, Google, Amazon and Flipkart; shifting the power from “carrier” to “content”. Explore our Popular Data Science Courses Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Courses This shift was once again captured by the use of “data center” starting with the arrival of Internet companies and the dot-com bubble in late nineties. In recent times, the term “cloud data center” is gaining currency after the arrival of “cloud computing”. Though interest in computers started in early fifties, Computer Science took shape only in seventies; IITs in India created the first undergraduate program in Computer Science and a formal academic entity in seventies. In the next four decades Computer Science has become a dominant academic discipline attracting the best of the talent, more so in countries like India. With its success in software services (with $ 160 Billion annual revenue, about 5 million direct jobs created in the past 20 years and nearly 7% of India’s GDP), Computer Science has become an aspiration for hundreds of millions of Indians. With the shift in “power” from “computers” to “data” – “carrier” to “content” – it is but natural, that emphasis shifts from “computer science” to “data science” – a term that is in wide circulation only in the past couple of years, more in corporate circles than in academic institutions. In many places including IIIT Bangalore, the erstwhile Database and Information Systems groups are getting re-christened as “Data Science” groups; of course, for many acdemics, “Data Science” is just a buzzword, that will go “out of fashion” soon. Only time will tell! As far as we are concerned, the arrival of data science represents the natural progression of “analytics”, that will use the “data” to create value, the same way Metro is creating value out of railroad and train coaches or Uber is creating value out of investments in road and cars or Singapore Airlines creating value out of airport infrastructure and Boeing / Airbus planes. More important, the shift from “carrier” to “content” to “control” also presents economic opportunities that are much larger in size. We do expect the same from Analytics as the emphasis shifts from Computer Science to Data Science to Analytics. Computers originally created to “compute” mathematical tables could be applied to a wide range of problems across every industry – mining and machinery, transportation, hospitality, manufacturing, retail, banking & financial services, education, healthcare and Government; in the same vein, Analytics that is currently used to summarize, visualize and predict would be used in many ways that we cannot even dream of today, the same way the designers of computer systems in 60’s and 70’s could not have predicted the varied applications of computers in the subsequent decades. We are indeed in exciting times and you the budding Analytics professional could not have been more lucky. Announcing PG Diploma in Data Analytics with IIT Bangalore – To Know more about the Program Visit – PG Diploma in Data Analytics. Top Data Science Skills to Learn to upskill SL. No Top Data Science Skills to Learn 1 Data Analysis Online Courses Inferential Statistics Online Courses 2 Hypothesis Testing Online Courses Logistic Regression Online Courses 3 Linear Regression Courses Linear Algebra for Analysis Online Courses upGrad’s Exclusive Data Science Webinar for you – ODE Thought Leadership Presentation document.createElement('video'); https://cdn.upgrad.com/blog/ppt-by-ode-infinity.mp4 Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? Our learners also read: Free Online Python Course for Beginners About Prof. S. Sadagopan Professor Sadagopan, currently the Director (President) of IIIT-Bangalore (a PhD granting University), has over 25 years of experience in Operations Research, Decision Theory, Multi-criteria optimization, Simulation, Enterprise computing etc. His research work has appeared in several international journals including IEEE Transactions, European J of Operational Research, J of Optimization Theory & Applications, Naval Research Logistics, Simulation and Decision Support Systems. He is a referee for several journals and serves on the editorial boards of many journals.
Read More

by Prof. S. Sadagopan

11 May'16
Enlarge the analytics & data science talent pool

5.19K+

Enlarge the analytics & data science talent pool

Note: The articlewas originally written by Sameer Dhanrajani, Business Leader at Cognizant Technology Solutions. A Better Talent acquisition Framework Although many articles have been written lamenting the current talent shortage in analytics and data science, I still find that the majority of companies could improve their success by simply revamping their current talent acquisition processes. Learn data science courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career. We’re all well aware that strong quantitative professionals are few and far between, so it’s in a company’s best interest to be doing everything in their power to land qualified candidates as soon as they find them. It’s a candidate’s market, with strong candidates going on and off the market lightning fast, yet many organizational processes are still slow and outdated. These sluggish procedures are not equipped to handle many candidates who are fielding multiple offers from other companies who are just as hungry (if not more so) for quantitative talent. Here are the key areas I would change to make hiring processes more competitive: Fix your salary bands – It (almost) goes without saying that if your salary offerings are outdated or aren’t competitive to the field, it will be difficult for you to get the attention of qualified candidates; stay topical with relevant compensation grids. Consider one-time bonuses – Want to make your offer compelling but can’t change the salary? Sign-on bonuses and relocation packages are also frequently used, especially near the end of the year, when a candidate is potentially walking away from an earned bonus; a sign-on bonus can help seal the deal. Be open to other forms of compensation – There are plenty of non-monetary ways to entice Quants to your company, like having the latest tools, solving challenging problems, organization-wide buy-in for analytics and more. Other things to consider could be flexible work arrangements, remote options or other unique perks. Pick up the pace – Talented analytics professionals are rare, and the chances that qualified candidates will be interviewing with multiple companies are very high. Don’t hesitate to make an offer if you find what you’re looking for at a swift pace – your competitors won’t. Court the candidate – Just as you want a candidate who stands out from the pack, a candidate wants a company that makes an effort to stand apart also. I read somewhere, a client from Chicago sent an interviewing candidate and his family pizzas from a particularly tasty restaurant in the city. I can’t say for sure that the pizza was what persuaded him to take the company’s offer, but a little old-fashioned wooing never hurts. Button up the process – Just as it helps to have an expedited process, it also works to your benefit is the process is as smooth and trouble-free as you can make it. This means hassle-free travel arrangements, on-time interviews, and quick feedback. Network – make sure that you know the best of the talent available in the market at all levels and keep in touch with them thru porfessional social sites on subtle basis as this will come handy in picking the right candidate on selective basis Redesigned Interview Process In the old days one would screen resumes and then schedule lots of 1:1’s. Typically people would ask questions aimed at assessing a candidate’s proficiency with stats, technicality, and ability to solve problems. But there were three problems with this – the interviews weren’t coordinated well enough to get a holistic view of the candidate, we were never really sure if their answers would translate to effective performance on the job, and from the perspective of the candidate it was a pretty lengthy interrogation. So, a new interview process need to be designed that is much more effective and transparent – we want to give the candidate a sense for what a day in the life of a member on the team is like, and get a read on what it would be like to work with a company. In total it takes about two days to make a decision, and there be no false positives (possibly some false negatives though), and the feedback from both the candidates and the team members has been positive. There are four steps to the process: Resume/phone screens – look for people who have experience using data to drive decisions, and some knowledge of what your company is all about. On both counts you’ll get a much deeper read later in the process; you just want to make sure that moving forward is a good use of either of both of your time. Basic data challenge – The goal here is to validate the candidate’s ability to work with data, as described in their resume. So send a few data sets to them and ask a basic question; the exercise should be easy for anyone who has experience. In-house data challenge – This is should be the meat of the interview process. Try to be as transparent about it as possible – they’ll get to see what it’s like working with you and vice versa. So have the candidate sit with the team, give them access to your data, and a broad question. They then have the day to attack the problem however they’re inclined, with the support of the people around them. Do encourage questions, have lunch with them to ease the tension, and check-in periodically to make sure they aren’t stuck on something trivial. At the end of the day, we gather a small team together and have them present their methodology and findings to you. Here, look for things like an eye for detail (did they investigate the data they’re relying upon for analysis), rigor (did they build a model and if so, are the results sound), action-oriented (what would we do with what you found), and communication skills. Read between the resume lines Intellectual curiosity is what you should discover from the project plans. It’s what gives the candidate the ability to find loopholes or outliers in data that helps crack the code to find the answers to issues like how a fraudster taps into your system or what consumer shopping behaviors should be considered when creating a new product marketing strategy. Data scientists find the opportunities that you didn’t even know were in the realm of existence for your company. They also find the needle in the haystack that is causing a kink in your business – but on an entirely monumental scale. In many instances, these are very complex algorithms and very technical findings. However, a data scientist is only as good as the person he must relay his findings to. Others within the business need to be able to understand this information and apply these insights appropriately. Explore our Popular Data Science Courses Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Courses Good data scientists can make analogies and metaphors to explain the data but not every concept can be boiled down in layman’s terms. A space rocket is not an automobile and, in the brave new world, everyone must make this paradigm shift. Top Data Science Skills You Should Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Online Certification Inferential Statistics Online Certification 2 Hypothesis Testing Online Certification Logistic Regression Online Certification 3 Linear Regression Certification Linear Algebra for Analysis Online Certification upGrad’s Exclusive Data Science Webinar for you – Watch our Webinar on The Future of Consumer Data in an Open Data Economy document.createElement('video'); https://cdn.upgrad.com/blog/sashi-edupuganti.mp4 Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? Our learners also read: Free Python Course with Certification And lastly, the data scientist you’re looking for needs to have strong business acumen. Do they know your business? Do they know what problems you’re trying to solve? And do they find opportunities that you never would have guessed or spotted?
Read More

by upGrad

14 May'16
UpGrad partners with Analytics Vidhya

5.69K+

UpGrad partners with Analytics Vidhya

We are happy to announce our partnership with Analytics Vidhya, a pioneer in the Data Science community. Analytics Vidhya is well known for its impressive knowledge base, be it the hackathons they organize or tools and frameworks that they help demystify. In their own words, “Analytics Vidhya is a passionate community for Analytics/Data Science professionals, and aims at bringing together influencers and learners to augment knowledge”. Explore our Popular Data Science Degrees Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Degrees We are joining hands to provide candidates of our PG Diploma in Data Analytics, an added exposure to UpGrad Industry Projects. While the program already covers multiple case studies and projects in the core curriculum, these projects with Analytics Vidhya will be optional for students to help them further hone their skills on data-driven problem-solving techniques. To further facilitate the learning, Analytics Vidhya will also be providing mentoring sessions to help our students with the approach to these projects. Our learners also read: Free Online Python Course for Beginners Top Essential Data Science Skills to Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Certifications Inferential Statistics Certifications 2 Hypothesis Testing Certifications Logistic Regression Certifications 3 Linear Regression Certifications Linear Algebra for Analysis Certifications This collaboration brings great value to the program by allowing our students to add another dimension to their resume which goes beyond the capstone projects and case studies that are already a part of the program. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? Through this, we hope our students would be equipped to showcase their ability to dissect any problem statement and interpret what the model results mean for business decision making. This also helps us to differentiate UpGrad-IIITB students in the eyes of the recruiters. upGrad’s Exclusive Data Science Webinar for you – Transformation & Opportunities in Analytics & Insights document.createElement('video'); https://cdn.upgrad.com/blog/jai-kapoor.mp4 Check out our data science training to upskill yourself
Read More

by Omkar Pradhan

09 Oct'16
Data Analytics Student Speak: Story of Thulasiram

5.69K+

Data Analytics Student Speak: Story of Thulasiram

When Thulasiram enrolled in the UpGrad Data Analytics program, in its first cohort, he was not very different for us, from the rest of our students in this. While we still do not and should not treat learners differently, being in the business of education – we definitely see this particular student in a different light. His sheer resilience and passion for learning shaped his success story at UpGrad. Humble beginnings Born in the small town of Chittoor, Andhra Pradesh, Thulasiram does not remember much of his childhood given that he enlisted in the Navy at a very young age of about 15 years. Right out of 10th standard, he trained for four years, acquiring a diploma in mechanical engineering. Thulasiram came from humble means. His father was the manager of a small general store and his mother a housewife. It’s difficult to dream big when leading a sheltered life with not many avenues for exposure to unconventional and exciting opportunities. But you can’t take learning out of the learner. “One thing I remember about school is our Math teacher,” reminisces Thulasiram, “He used to give us lot of puzzles to solve. I still remember one puzzle. If you take a chessboard and assume that all pawns are queens; you have to arrange them in such a way that none of the eight pawns should die. Every queen, should not affect another queen. It was a challenging task, but ultimately we did it, we solved it.” Navy & MBA At 35 years of age, Thulasiram has been in the navy for 19 years. Presently, he is an instructor at the Naval Institute of Aeronautical Technology. “I am from the navy and a lot of people don’t know that there is an aviation wing too. So, it’s like a dream; when you are a small child, you never dream of touching an aircraft, let alone maintaining it. I am very proud of doing this,” says Thulasiram on taking the initiative to upskill himself and becoming a naval-aeronautics instructor. When the system doesn’t push you, you have to take the initiative yourself. Thulasiram imbibed this attitude. He went on to enroll in an MBA program and believes that the program drastically helped improve his communication skills and plan his work better. How Can You Transition to Data Analytics? Data Analytics Like most of us, Thulasiram began hearing about the hugely popular and rapidly growing domain of data analytics all around him. Already equipped with the DNA of an avid learner and keen to pick up yet another skill, Thulasiram began researching the subject. He soon realised that this was going to be a task more rigorous and challenging than any he had faced so far. It seemed you had to be a computer God, equipped with analytical, mathematical, statistical and programming skills as prerequisites – a list that could deter even the most motivated individuals. This is where Thulsiram’s determination set him apart from most others. Despite his friends, colleagues and others that he ran the idea by, expressing apprehension and deterring him from undertaking such a program purely with his interests in mind – time was taken, difficulty level, etc. – Thulasiram, true to the spirit, decided to pursue it anyway. Referring to the crucial moment when he made the decision, he says, If it is easy, everybody will do it. So, there is no fun in doing something which everybody can do. I thought, let’s go for it. Let me push myself — challenge myself. Maybe, it will be a good challenge. Let’s go ahead and see whether I will be able to do it or not. UpGrad Having made up his mind, Thulasiram got straight down to work. After some online research, he decided that UpGrad’s Data Analytics program, offered in collaboration with IIIT-Bangalore that awarded a PG Diploma on successful completion, was the way to go. The experience, he says, has been nothing short of phenomenal. It is thrilling to pick up complex concepts like machine learning, programming, or statistics within a matter of three to four months – a feat he deems nearly impossible had the source or provider been one other than UpGrad. Our learners also read: Top Python Free Courses Favorite Elements Ask him what are the top two attractions for him in this program and, surprising us, he says deadlines! Deadlines and assignments. He feels that deadlines add the right amount of pressure he needs to push himself forward and manage time well. As far as assignments are concerned, Thulasiram’s views resonate with our own – that real-life case studies and application-based learning goes a long way. Working on such cases and seeing results is far superior to only theoretical learning. He adds, “flexibility is required because mostly only working professionals will be opting for this course. You can’t say that today you are free, because tomorrow some project may be landing in your hands. So, if there is no flexibility, it will be very difficult. With flexibility, we can plan things and maybe accordingly adjust work and family and studies,” giving the UpGrad mode of learning, yet another thumbs-up. Amongst many other great things he had to say, Thulasiram was surprised at the number of live sessions conducted with industry professionals/mentors every week. Along with the rest of his class, he particularly liked the one conducted by Mr. Anand from Gramener. Top Data Science Skills to Learn to upskill SL. No Top Data Science Skills to Learn 1 Data Analysis Online Courses Inferential Statistics Online Courses 2 Hypothesis Testing Online Courses Logistic Regression Online Courses 3 Linear Regression Courses Linear Algebra for Analysis Online Courses What Kind of Salaries do Data Scientists and Analysts Demand? Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? upGrad’s Exclusive Data Science Webinar for you – ODE Thought Leadership Presentation document.createElement('video'); https://cdn.upgrad.com/blog/ppt-by-ode-infinity.mp4 Explore our Popular Data Science Courses Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Courses “Have learned most here, only want to learn..” Interested only in learning, Thulasiram made this observation about the program – compared to his MBA or any other stage of life. He signs off calling it a game-changer and giving a strong recommendation to UpGrad’s Data Analytics program. We are truly grateful to Thulasiram and our entire student community who give us the zeal to move forward every day, with testimonials like these, and make the learning experience more authentic, engaging, and truly rewarding for each one of them. If you are curious to learn about data analytics, data science, check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Read More

by Apoorva Shankar

07 Dec'16
Decoding Easy vs. Not-So-Easy Data Analytics

5.12K+

Decoding Easy vs. Not-So-Easy Data Analytics

Authored by Professor S. Sadagopan, Director – IIIT Bangalore. Prof. Sadagopan is one of the most experienced academicians on the expert panel of UpGrad & IIIT-B PG Diploma Program in Data Analytics. As a budding analytics professional confounded by jargon, hype and overwhelming marketing messages that talk of millions of upcoming jobs that are paid in millions of Rupees, you ought to get clarity about the “real” value of a data analytics education. Here are some tidbits – that should hopefully help in reducing your confusion. Some smart people can use “analytical thinking” to come up with “amazing numbers”; they are very useful but being “intuitive”, they cannot be “taught.” For example: Easy Analytics Pre-configuring ATMs with Data Insights  “We have the fastest ATM on this planet” Claimed a respected Bank. Did they get a new ATM made especially for them? No way. Some smart employee with an analytical mindset found that 90% of the time that users go to an ATM to withdraw cash, they use a fixed amount, say Rs 5,000. So, the Bank re-configured the standard screen options – Balance Inquiry, Withdrawal, Print Statement etc. – to include another option. Withdraw XYZ amount, based on individual customer’s past actions. This ended up saving one step of ATM operation. Instead of selecting the withdrawal option and then entering the amount to be withdrawn, you could now save some time – making the process more convenient and intuitive. A smart move indeed, however, this is something known as “Easy Analytics” that others can also copy. In fact, others DID copy, within three months! A Start-Up’s Guide to Data Analytics Hidden Data in the Weather In the sample data-sets that used to accompany a spreadsheet product in the 90’s, there used to be data on the area and population of every State in the United States. There was also an exercise to teach the formula part of the spreadsheet to compute the population density (population per sq. km). New Jersey, with a population of 467 per sq. km, is the State with the highest density. While teaching a class of MBA students in New Jersey, I met an Indian student who figured out that in terms of population density, New Jersey is more crowded than India with 446 people per sq. km!  An interesting observation, although comparing a State with a Country is a bit misleading. Once again, an Easy Analytics exercise leading to a “nice” observation! Some simple data analytics exercises can be routinely done, and are made relatively easier, thanks to amazing tools: B-School Buying Behavior Decoded In a B-School in India that has a store on campus, (campus is located far from the city center) some smart students put several years of sales data of their campus store. They were excited by the phenomenal computer power and near, idiot-proof analytics software. The real surprise, however, was that eight items accounted for 85% of their annual sales. More importantly, these eight items were consumed in just six days of the year! Everyone knew that a handful of items were the only fast-moving items, but they did not know the extent (85%) or the intensity (consumption in just six days) of this. It turns out that in the first 3 days of the semester the students would stock the items for the full semester! The B-School found it sensible to request a nearby store to prop up a temporary stall for just two weeks at the beginning of the semesters and close down the Campus Store. This saved useful space and costs without causing major inconvenience to the students. A good example of Easy Analytics done with the help of a powerful tool. Top 4 Data Analytics Skills You Need to Become an Expert! The “Not So Easy” Analytics needs deep analytical understanding, tools, an ‘analytical mindset’ and some hard work. Here are two examples, one taken from way back in the 70’s and the other occurring very recently: Not-So-Easy Analytics To Fly or Not to Fly, That is the Question Long ago, the American Airlines perfected planned overbooking of airline seats, thanks to SABRE Airline Reservation system that managed every airline seat. Armed with detailed past data of ‘empty seats’ and ‘no show’ in every segment of every flight for every day through the year, and modeling airline seats as perishable commodities, the American Airlines was able to improve yield, i.e., utilization of airplane capacity. They did this through planned overbooking – selling more tickets than the number of seats, based on projected cancellations. Explore our Popular Data Science Online Certifications Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Online Certifications If indeed more passengers showed up than the actual number of seats, American Airlines would request anyone volunteering to forego travel in the specific flight, with the offer to fly them by the next flight (often free) and taking care of hotel accommodation if needed. Sometimes, they would even offer cash incentives to the volunteer to opt-out. Using sophisticated Statistical and Operational Research modeling, American Airlines would ensure that the flights went full and the actual incidents of more passengers than the full capacity, was near zero. In fact, many students would look forward to such incidents so that they could get incentives, (in fact, I would have to include myself in this list) but rarely were they rewarded!) upGrad’s Exclusive Data Science Webinar for you – Transformation & Opportunities in Analytics & Insights document.createElement('video'); https://cdn.upgrad.com/blog/jai-kapoor.mp4 What American Airlines started as an experiment has become the standard industry practice over the years. Until recently, a team of well-trained (often Ph.D. degree holders) analysts armed with access to enormous computing power, was needed for such an analytics exercise to be sustained. Now, new generation software such as the R Programming language and powerful desktop computers with significant visualization/graphics power is changing the world of data analytics really fast. Anyone who is well-trained (not necessarily requiring a Ph.D. anymore) can become a first-rate analytics professional. Top Data Science Skills You Should Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Online Certification Inferential Statistics Online Certification 2 Hypothesis Testing Online Certification Logistic Regression Online Certification 3 Linear Regression Certification Linear Algebra for Analysis Online Certification Unleashing the Power of Data Analytics Our learners also read: Free Python Course with Certification Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences?   Cab Out of the Bag Uber is yet another example displaying how the power of data analytics can disrupt a well-established industry. Taxi-for-sure in Bangalore and Ola Cabs are similar to Uber. Together, these Taxi-App companies (using a Mobile App to hail a taxi, the status monitor the taxi, use and pay for the taxi) are trying to convince the world to move from car ownership to on-demand car usage. A simple but deep analytics exercise in the year 2008 gave such confidence to Uber that it began talking of reducing car sales by 25% by the year 2025! After building the Uber App for iPhone, the Uber founder enrolled few hundreds of taxi customers in San Francisco and few hundreds of taxi drivers in that area as well. All that the enrolled drivers had to do was to touch the Uber App whenever they were ready for a customer. Similarly, the enrolled taxi customers were requested to touch the Uber App whenever they were looking for a taxi. Thanks to the internet-connected phone (connectivity), Mobile App (user interface), GPS (taxi and end-user location) and GIS (location details), Uber could try connecting the taxi drivers and the taxi users. The real insight was that nearly 90% of the time, taxi drivers found a customer, less than 100 meters away! In the same way, nearly 90% of the time, taxi users were connected with their potential drivers in no time, not too far away. Unfortunately, till the Uber App came into existence, riders and taxi drivers had no way of knowing this information. More importantly, they both had no way of reaching each other! Once they had this information and access, a new way of taxi-hailing could be established. With back-end software to schedule taxis, payment gateway and a mobile payment mechanism, a far more superior taxi service could be established. Of course, near home, we had even better options like Taxi-for-sure trying to extend this experience even to auto rickshaws. The rest, as they say, is “history in the making!” Deep dive courses in data analytics will help prepare you for such high impact applications. It is not easy, but do remember former US President Kennedy’s words “we chose to go to the Moon not because it is easy, but because it is hard!” Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.  
Read More

by Prof. S. Sadagopan

14 Dec'16
Launching UpGrad’s Data Analytics Roadshow – Are You Game?

5.14K+

Launching UpGrad’s Data Analytics Roadshow – Are You Game?

We, at UpGrad, are excited to announce a brand new partnership with various thought leaders in the Data Analytics industry – IIIT Bangalore, Genpact, Analytics Vidhya and Gramener – to bring to you a one-of-a-kind Analytics Roadshow! As part of this roadshow, we will be conducting several back-to-back events that focus on different aspects of analytics, creating interaction points across India, to do our bit for a future ready and analytical, young workforce.  Also Read: Analytics Vidhya article on the UpGrad Data Analytics Roadshow Here is the line-up for the roadshow, to give you a better sense of what to expect: 9 webinars – These webinars (remote) will be conducted by industry experts and are aimed at increasing analytics awareness, providing a way for aspirants to interact with industry practitioners and getting their tough questions answered. 11 workshops – The workshops will be in-person events to take these interactions to the next level. These would be spread across 6 cities – Delhi, Bengaluru, Hyderabad, Chennai, Mumbai and Pune. So, if you are in any of these cities, we are looking forward to interact with you. Featured Data Science program for you: Master of Science in Data Science from from IIIT-B 2 Conclaves – These conclaves are larger events with a pre-defined agendas and time for networking. The first conclave is happening on the 17th of December in Bengaluru.  Explore our Popular Data Science Online Certifications Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Online Certifications Hackathon – Time to pull up your sleeves and showcase your nifty skills. We will be announcing the format of the event shortly. “We find that the IT in­dustry is ab­sorb­ing al­most half of all of the ana­lyt­ics jobs. Banking is the second largest, but trails at al­most one fourth of IT’s re­cruit­ing volume. It is in­ter­est­ing that data rich in­dus­tries like Retail, Energy and Insurance are trail­ing near the bot­tom, lower than even con­struc­tion or me­dia, who handle less data. Perhaps these are ripe for dis­rup­tion through ana­lyt­ics?” Our learners also read: Learn Python Online for Free Mr. S. Anand, CEO of Gramener, wonders aloud. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences? upGrad’s Exclusive Data Science Webinar for you – Watch our Webinar on The Future of Consumer Data in an Open Data Economy document.createElement('video'); https://cdn.upgrad.com/blog/sashi-edupuganti.mp4   Top Data Science Skills You Should Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Online Certification Inferential Statistics Online Certification 2 Hypothesis Testing Online Certification Logistic Regression Online Certification 3 Linear Regression Certification Linear Algebra for Analysis Online Certification Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Read More

by Apoorva Shankar

15 Dec'16
What’s Cooking in Data Analytics? Team Data at UpGrad Speaks Up!

5.22K+

What’s Cooking in Data Analytics? Team Data at UpGrad Speaks Up!

Team Data Analytics is creating the most immersive learning experience for working professionals at UpGrad. Data Insider recently checked in to me to get my insights on the data analytics industry; including trends to watch out for and must-have skill sets for today’s developers. Here’s how it went: How competitive is the data analytics industry today? What is the demand for these types of professionals? Let’s talk some numbers, a widely-quoted McKinsey report states that the United States will face an acute shortage of around 1.5 million data professionals by 2018. In India, which is emerging as the global analytics hub, the shortage of such professionals could go up to as high as 200,000. In India alone, the number of analytics jobs saw a 120 percent rise from June 2015 to June 2016. So, we clearly have a challenge set out for us. Naturally, because of acute talent shortage, talented professionals are high in demand. Decoding Easy vs. Not-So-Easy Analytics What trends are you following in the data analytics industry today? Why are you interested in them? There are three key trends that we should watch out for: Personalization I think the usage of data to create personalized systems is a key trend being adopted extremely fast, across the board. Most of the internet services are removing the anonymity of online users and moving towards differentiated treatment. For example, words recommendations when you are typing your messages or destinations recommendations when you are using Uber. Our learners also read: Learn Python Online for Free End of Moore’s Law Another interesting trend to watch out for is how companies are getting more and more creative as we reach the end of Moore’s Law. Moore’s Law essentially states that every two years we will be able to fit double the number of transistors that could be fit on a chip, two years ago. Because of this law, we have unleashed the power of storing and processing huge amounts of data, responsible for the entire data revolution. But what will happen next? IoT Another trend to watch out for, for the sheer possibilities it brings. It’s the emergence of smart systems which is made possible by the coming together of cloud, big data, and IoT (internet of things). Explore our Popular Data Science Courses Executive Post Graduate Programme in Data Science from IIITB Professional Certificate Program in Data Science for Business Decision Making Master of Science in Data Science from University of Arizona Advanced Certificate Programme in Data Science from IIITB Professional Certificate Program in Data Science and Business Analytics from University of Maryland Data Science Courses What skill sets are critical for data engineers today? What do they need to know to stay competitive? A good data scientist sits at a rare overlap of three areas: Domain Knowledge This helps understand and appreciate the nuances of a business problem. For e.g, an e-commerce company would want to recommend complementary products to its buyers. Statistical Knowledge Statistical and mathematical knowledge help to inform data-driven decision making. For instance, one can use market basket analysis to come up with complementary products for a particular buy. Technical Knowledge This helps perform complex analysis at scale; such as creating a recommendation system that shows that a buyer might prefer to also buy a pen while buying a notebook. How Can You Transition to Data Analytics? Outside of their technical expertise, what other skills should those in data analytics and business intelligence be sure to develop? Ultimately, data scientists are problem solvers. And every problem has a specific context, content and story behind it. This is where it becomes extremely important to tie all these factors together – into a common narrative. Essentially all data professionals need to be great storytellers. In this respect, one of the key skills for analysts to sharpen would be, breaking down the complexities of analytics for others working with them. They can appreciate the actual insights derived – and work toward a common business goal. In addition, what is as crucial is getting into a habit of constantly learning. Even if it means waking up every morning and reading what’s relevant and current in your domain. Top Essential Data Science Skills to Learn SL. No Top Data Science Skills to Learn 1 Data Analysis Certifications Inferential Statistics Certifications 2 Hypothesis Testing Certifications Logistic Regression Certifications 3 Linear Regression Certifications Linear Algebra for Analysis Certifications What should these professionals be doing to stay ahead of trends and innovations in the field? Professionals these days need to continuously upskill themselves and be willing to unlearn and relearn. The world of work and the industrial landscape of technology-heavy fields such as data analytics is changing every year. The only way to stay ahead, or even at par with these trends, is to invest in learning, taking up exciting industry-relevant projects, participating in competitions like Kaggle, etc. How important is mentorship in the data industry? Who can professionals look toward to help further their careers and their skills? Extremely important. Considering how fast this domain has emerged, academia and universities, in general, have not had the chance to keep up equally fast. Hence, the only way to stay industry-relevant with respect to this domain is to have industry-specific learning. This can only be done in two ways – through real-life case studies and mentors who are working/senior professionals and hail from the data analytics industry. In fact, at UpGrad, there is a lot of stress on industry mentorship for aspiring data specialists. This is in addition to a whole host of case studies and industry-relevant projects. Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career. Read our popular Data Science Articles Data Science Career Path: A Comprehensive Career Guide Data Science Career Growth: The Future of Work is here Why is Data Science Important? 8 Ways Data Science Brings Value to the Business Relevance of Data Science for Managers The Ultimate Data Science Cheat Sheet Every Data Scientists Should Have Top 6 Reasons Why You Should Become a Data Scientist A Day in the Life of Data Scientist: What do they do? Myth Busted: Data Science doesn’t need Coding Business Intelligence vs Data Science: What are the differences?   Where are the best places for data professionals to find mentors? upGrad’s Exclusive Data Science Webinar for you – Transformation & Opportunities in Analytics & Insights document.createElement('video'); https://cdn.upgrad.com/blog/jai-kapoor.mp4 While it’s important for budding or aspiring data professionals to tap into their networks to find the right mentors, it is admittedly tough to do so. There are two main reasons that can be blamed for this. First, due to the nascent stage, the industry is at, it is extremely difficult to find someone with the requisite skill sets to be a mentor. Even if you find someone with considerable experience in the field, not everybody has the time and inclination to be an effective mentor. Hence most people don’t know where to go to be mentored. That’s where platforms like UpGrad come in, which provide you with a rich, industry-relevant learning experience. Nowhere else are you likely to chance upon such a wide range of industry tie-ups or associations for mentorship from very senior and reputed professionals. How Can You Transition to Data Analytics? What resources should those in the data analytics industry be using to ensure they’re educated and up-to-date on developments, trends, and skills? There are many. For starters, here are some good and pretty interesting blogs and resources that would serve aspiring/current data analysts well to keep up with Podcasts like Data Skeptic, Freakonomics, Talking Machines, and much more.   This interview was originally published on Data Insider.  
Read More

by Rohit Sharma

23 Dec'16