- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Types of Sampling Methods & Techniques in Business Analytics [With Examples]
Updated on 24 April, 2024
7.38K+ views
• 13 min read
Table of Contents
- Introduction
- What is Sampling?
- Types of Sampling: Sampling Methods
- Population vs Sample
- Probability Sampling Methods
- Uses of Probability Sampling
- Non-probability Sampling Methods
- Uses of Non-probability Sampling
- How do you Decide on the Type of Sampling to Use?
- Difference Between Probability Sampling and Non-probability Sampling Methods
- Conclusion
Introduction
Dealing with enormous amounts of data is one of the main challenges in data analytics. It would be unnecessary and even impossible to analyze the entire population whenever you undertake research on a specific group. So how can we solve this issue? Is it possible to select a portion of the data to serve as a representative sample of the complete dataset? It appears that there is. Without looking at the complete dataset, you can do research using a variety of sampling strategies used in data analytics. In this article, we’ll learn about what sampling is, how it functions, different types of sampling techniques, and how to decide on the type of sampling to use. Dive deep into the world of sampling and similar concepts by pursuing an Executive PG Program in Business Analytics from LIBA.
What is Sampling?
Sampling is a technique for choosing certain individuals or a small portion of the population in order to draw conclusions about the population as a whole and determine its characteristics. Researchers frequently utilize various sampling techniques in market research so they do not have to study the full community in order to gather useful information.
Consider the case where we would like to know the proportion of bike users in a particular city. Calling everyone in the city and asking what kind of mode of transport they use is one method to go about this. The alternative would be to ask the same question of a smaller subgroup of people and then use the results to estimate the size of the entire population.
But this procedure is more complicated than it seems. Your sample size ought to be perfect whenever you use this procedure; it shouldn’t be either too big or too tiny. Once the size of your sample has been determined, you must then gather a sample from the population using the appropriate sampling techniques. Every sampling method ultimately falls into one of two basic categories: Probability sampling and Non-probability sampling.
Learn business analytics courses online from the World’s top Universities. Earn Masters, Executive PG Programmer Certification, or Global Master Certification to fast-track your career.
Types of Sampling: Sampling Methods
There are two types of sampling methods used in market action research: probability sampling and non-probability sampling. Let’s examine these two sampling techniques in more detail.
- Probability sampling: In this sampling strategy, a researcher chooses a few criteria and randomly selects individuals from a population. With the use of this selection option, each member has an equal chance of taking part in the sample.
- Non-probability sampling: In non-probability sampling, participants are chosen at random for the study. This type of sampling is not a set or predetermined selection procedure. This makes it challenging for every component of the population to have an equal chance of being included in a sample.
Check out our free courses related to upskill yourself.
Examples
Probability Sampling Methods:
- Selecting a random sample of 50 employees from a company’s employee database.
- Dividing a population of students into strata based on their grade levels and then randomly selecting a sample from each stratum.
- Dividing a city into different neighborhoods, randomly selecting a few neighborhoods, and then surveying all households within the selected neighborhoods.
Non-probability Sampling Methods:
- Conducting on-the-spot interviews with people passing by in a shopping mall.
- Selecting specific individuals who possess the desired characteristics for a study, such as selecting expert witnesses for a legal case.
- Starting with a few initial participants and asking them to refer other potential participants for a study on a sensitive topic like illegal drug use.
Also Check, Job-ready Program in Business Analytics from upGrad.
Population vs Sample
Every researcher needs to be able to understand the difference between the population and the sample. It is simple to figure out the distinction between a population and a sample. One essential rule of statistics that you must always keep in mind is that a sample is always a smaller group (subset) inside the population.
Every study in market research and statistics has a central question in mind. The outcome of this investigation is determined by observation and experiment with a population sample size. Insights that explain a phenomenon throughout the population are gained through this process.
Population
We are all aware of what the term “population” means. It is often employed to refer to the total number of people residing in a particular region of our nation or state. In research, a population is a complete set of components connected by a common parameter.
It’s not necessary for the ‘population’ in the study to be human. Any data parameter that contains a common characteristic qualifies.
Sample
A sample is a more limited representation of the population as a whole. It is an accurate representation of the study’s population. The population members who are asked to do the survey constitute the representative sample while surveys are being conducted. As a result, a sample is a subset or subgroup of the population. This sample can be examined to learn more about the traits or actions of the total population.
Numerous research techniques, including probability sampling and non-probability sampling, are used to create data samples. Depending on the type of study and the needed level of information, several sampling techniques are used.
Sampling frame
The objects in your population are listed in a sampling frame. It is an exhaustive list of all the people or things you want to study. A population and a sampling frame differ in that a population is more general and a frame is more particular. However, you can’t just use any list you find. To ensure that your sampling period meets your demands, caution must be used. Because of this, a sampling frame needs to:
- Include everyone who belongs to the target population.
- Include no one who is not a member of the target population.
- Contains precise data that can be utilized to get in touch with particular people.
Sample Size
The phrase “sample size” in market research refers to the total population of participants in the study. Based on factors such as age, gender, and geographic area, researchers select their sample. It may be general or precise.
For instance, you might be interested in learning what consumers between the ages of 30-45 think about your product. Also providing you with a wide population range is the option of merely requiring that your sample reside in India. The sample size is the total number of people included in a sample. Learn more about these methods and terms via Professional Certificate Program in Data Science and Business Analytics.
Probability Sampling Methods
One of the important categories of sampling techniques is probability sampling. Every member of the population has a chance to be chosen via probability sampling. , it is typically used when you wish to obtain results that are representative of the entire population
Simple Random Sampling
In simple random sampling, every observation in the population has an equal likelihood of being chosen, and any potential sample of a given size also has an equal chance of being chosen. One way to choose a simple random sample is to sequentially number each unit on the sampling frame and make the selections using random numbers generated by a random number generator.
Simple random sampling allows for the selection of the units with or without replacement. In contrast to sampling without replacement, which only allows for a single selection of a unit, replacement sampling permits numerous selections of the units. The most popular technique, absent replacement, is sampling.
Example: Depending on the size of your firm, the researcher gives each member of a database of companies a number between 1 and 1000 before using a random number generator to choose 100 individuals.
Systematic Random Sampling
The first object from the population is randomly chosen by the researcher as part of systematic random sampling. The researcher will then pick the nth object from the list for each choice. Systematic random sampling is a fairly simple process that can be carried out manually. Unless specific demographic traits are reproduced for every nth object, the results are representative of the population.
Example: Every individual in the company database is given a number by the researcher. Instead of creating numbers at random, a random beginning point (let’s say 10), is chosen. The researcher then chooses, say, every tenth individual on the list (20, 30, 40, and so on) until the sample is collected.
Stratified Random Sampling
In stratified random sampling, the total population is separated into several distinct, homogenous groups (strata), and final participants are randomly selected from the strata for study. To ensure that every group member has an equal chance of being chosen using basic probability, the members of each group should be different.
Example: The researcher wants to make sure that the sample accurately reflects gender in a company that has 200 female employees and 600 male employees. So, based on gender, the population is split into two sections.
Cluster Sampling
Cluster sampling divides the population into smaller groups, yet each group shares traits with the entire sample. You choose an entire subgroup at random as opposed to choosing a sample from every subgroup. When working with sizable and diverse populations, this approach is useful.
Example: A fast-food chain has more than a hundred locations in 10 cities throughout the globe, with nearly the same number of staff members working in comparable positions. Then, two or three offices are chosen at random by the researcher and used as the sample.
Uses of Probability Sampling
Probability sampling has several applications, including:
- Reduce Sample Bias: When using the probability sampling approach, the sample that is drawn from a population has little to no research bias. The sample choice primarily reflects the researcher’s comprehension and conclusions. Data gathering through probability sampling results in higher-quality data since the sample accurately represents the population.
- Population Diversity: It’s crucial to have enough representation in large, diverse populations to prevent statistics from being biased towards one demographic.
- Create an Accurate Sample: Probability sampling assists in the planning and production of an accurate sample by the researchers. This makes it easier to get precise data.
Non-probability Sampling Methods
Non-probability sampling limits the possibility that each person will be selected for the sample. Although easier and less expensive, this sampling technique carries a significant risk of bias. It is frequently employed in qualitative and exploratory research with the goal of gaining a basic understanding of the community.
Convenience Sampling
The simplest sampling technique is convenience sampling, where participants are chosen based on their availability and desire to take part in the survey. The sample could not be representative of the population as a whole, hence the results are subject to severe bias.
Example: The surveys that are done on YouTube or Facebook. People who are interested in participating in the survey or poll will show up, but the outcomes may not be reliable because they are highly biased.
Voluntary Response Sampling
Similar to convenience sampling, voluntary response sampling depends only on participants’ willingness to participate. However, people volunteer themselves rather than being selected by the researcher.
Example: The researcher offers the option for participation in a survey that is sent to every employee of a company.
Purposive Sampling Technique
In the Purposive sampling technique, a researcher uses discretion in selecting individuals from the population to take part in the study. Researchers frequently think they can use good judgment to gather a representative sample while also saving time and money
There is a likelihood that the results will be extremely accurate with a small margin of error because the researcher’s knowledge is required to generate a sample in this sampling technique.
Ex: A television network wishes to investigate one of its programmes. The target audience is known to the researcher, who can then select participants from the target audience for the study.
Snowball Sampling Technique
This sampling strategy involves primary data sources suggesting other potential primary data sources that could be used in the investigation. The snowball sampling strategy depends on recommendations from the initial participants to generate more subjects. As a result, sample group members are selected using this sampling technique via chain referral.
In the social sciences, this sampling technique is widely used for studying hard-to-reach groups. The sample expands like a snowball when more candidates who are known to the existing candidates are nominated.
Example: Finding people with uncommon disorders who are willing to participate in research could be challenging for a pharmaceutical business. By asking them to refer participants from their contacts, the pharma manufacturer can recruit a small number of people to take part in the clinical study.
Business Analytics Programs from Top Universities
Uses of Non-probability Sampling
Non-probability sampling has several applications, including:
- Creating hypothesis: When there is little to no prior knowledge available, researchers employ the non-probability sampling method to make an assumption. This technique aids in the quick return of data and creates a foundation for additional study.
- Exploratory research: When performing exploratory research, pilot studies, or qualitative research, researchers frequently employ this sample strategy.
- Budget and time restrictions: The non-probability technique is used when these factors are present and preliminary data must be gathered. It is simpler to choose respondents at random and have them complete the survey or questionnaire because the survey design is flexible.
Acquire the deeper understanding of sampling analysis with the Business Analytics Certification Program from upGrad.
How do you Decide on the Type of Sampling to Use?
To achieve your research objectives, it is crucial to select a sampling technique carefully. Your sampling’s effectiveness will depend on a number of variables. Here are several procedures used by professionals to select the most appropriate sampling strategy.
- Note the objectives of the study. Typically, it has to be a combination of cost, accuracy, and precision.
- Determine the efficient sampling strategies that could possibly meet the research objectives.
- Test each of these strategies to see if they assist you in achieving your objective.
- Pick the approach that suits the research the best.
Difference Between Probability Sampling and Non-probability Sampling Methods
Basis |
Probability Sampling Technique | Non-Probability Sampling Technique |
Definition | In this technique, samples from a larger population are selected using a process based on the theory of probability. | In this technique, samples are chosen by the researcher based on their own judgment rather than by random selection. |
Nature | The research conducted is definitive. | The research conducted is exploratory. |
Sample | The sample is selected using a procedure, so the demographics of the population are clearly represented. | The depiction of the population’s demographics tends to be biased because the sampling methodology is random. |
Time | Takes longer to complete since the selection criteria are defined by the research design before the market research study starts. | Since neither the sample nor its selection criteria are ambiguous, this kind of sampling technique is quick. |
Hypothesis | Prior to the study’s start, there is a guiding hypothesis in probability sampling, and this approach seeks to substantiate it. | In non-probability sampling, the hypothesis is created after the research study has been completed. |
Result | The results of this kind of sampling are conclusive since it is completely unbiased. | Because of the complete bias of this form of sampling, the findings are also biased, making the research questionable. |
Conclusion
The entire subject of probability and non-probability sampling procedures is covered in this article. Prior to beginning any form of research, it is crucial to select the appropriate sample methods. The sample you select will have a significant impact on the success of your study. There are many more sampling procedures from which to choose in order to hone your study; these are simply the top ones.
It’s very important to be certain of the appropriate sampling technique to utilize and at what times you want to succeed as a business analyst. If you want to learn more about business analytics, you may check out Job-ready Program in Business Analytics, which is offered by upGrad. It offers a variety of learning resources, including live faculty engagement, interactive discussion boards, quizzes, and assignments, career counseling, interview preparation, and much more. Get started with this course right away to launch a successful business analytics career.
Frequently Asked Questions (FAQs)
1. What is sampling?
A sample is a smaller group of individuals/objects drawn from a larger population. Sampling is the process of deciding which group you will use to gather data for your study. You may interview a sample of 100 students, for instance, if you were investigating the viewpoints of students at your university.
2. Why do samples get used in studies?
Using samples, one can draw conclusions about populations. Since samples are useful, affordable, practical, and manageable, it is simpler to gather data from them.
3. What is bias in sampling?
When certain members of a population are systematically more likely to be chosen in a sample than others, this is known as sampling bias.
Did you find this article helpful?
Our Trending Courses
MS in Data Science Post Graduate Programme in Data Science & AI (Executive) DBA in Emerging Technologies with concentration in Generative AIOur Trending Skill
Data Analysis Inferential Statistics Logistic Regression Linear Regression Linear Algebra for Analysis Hypothesis TestingGet Free Consultation
By clicking "Submit" you Agree toupGrad's Terms & Conditions