Blog_Banner_Asset
    Homebreadcumb forward arrow iconBlogbreadcumb forward arrow iconData Sciencebreadcumb forward arrow iconTop 10 Exciting Data Science Applications in Banking

Top 10 Exciting Data Science Applications in Banking

Last updated:
4th Nov, 2019
Views
Read Time
8 Mins
share image icon
In this article
Chevron in toc
View All
Top 10 Exciting Data Science Applications in Banking

What is Data science?

Data science is the detailed study of information obtained by analyzing vast amounts of data arriving from the organization’s data warehouses. Modern data science deals with inferring data and developing related algorithms by using appropriate technology. The demand for data scientists makes data science courses more popular. 

Applications of data science include healthcare, targeted advertising, image recognition, voice recognition, gaming, augmented reality, etc. The introduction of data science in banking has got a lot of acceptance from half the planet. On the other hand, there are a lot of disagreements from high-end techies owing to the fact that banks can start performing data analytics in banking transactions, causing a breach of customer privacy.

Every bank account or credit card transaction can give data about your spending patterns and spending powers, which can be processed into precise information. This information can then be used for targeted advertising and marketing at the customer.

Few Applications of Data Science

As of now, data science has been widely applied in the following domains:

a) Healthcare

Data science can be used in image analysis to detect abnormalities and genetics to detect genetic patterns on DNA. It can also be used for drug development by solving chemical equations and analyzing biochemical effects on the human body.

b) Targeted Advertising

target

Data science algorithms decide the advertisement that you see while logging into web pages and applications in the backend.

c) Image recognition

facing recognition

One of the historical applications of data science is in the image recognition field, and most media companies have started using image recognition for user authentication into their systems.

d) Speech recognition

speech recognition

Apple launch Siri years ago, which uses data science behind it. The same applied to Google Voice, Amazon Echo, and Cortana.

e) Gaming

The gaming industry has over 2 billion players worldwide, and there will be a lot of data gushing in. this data needs to be analyzed to generate insights for game improvements, monetization methods and induce game addiction among players

f) Augmented reality

Augmented reality creates an overlapping real world and virtual world and provides an interactive experience. The most trending game that came up with augmented reality was Pokemon Go, which exhibited heavy dependency on applications of data science.

Top 10 Applications of Data Science in Banking

HDFC Bank in India was the pioneer in introducing data analytics in the banking segment in India.

 This was started in early 2004, and back then, the main idea was to segregate the ACTIVE bank accounts and to make a decision on the inactive bank accounts. It took a few years for the banking segment to get into the data science model, but since then, there has been a steady rise in the dependency. 

The use of data science in banking was an add-on long back, but now has become a necessity to keep up with the competition. 

Especially after the global financial crisis of 2008, the use of data analytics in banking for customer predictions, fraud detections, and financial advisories to identify and predict market trends.  Banks and financial institutions have a lot of user data. They know in and out of their customers, including complete personal details, income, spending patterns, purchase powers, investment risk appetites, etc.

Knowing all these and the formulating all these into an automated system based on data science and analytics helps banks to make credit decisions more accurately. This helps to provide customized offers to customers, launch new products and market them, etc. It also helps to segregate loyal customers from the rest so that banks can invest more on the relationship with the most loyal customers.

a) Fraud detection

Banks are now utilizing the data science to proactively detect fraud and provide customers with a high level of security. This is done by monitoring and analyzing user’s banking activities and to find out any suspicious or malicious patterns.

b) Customer segmentation for grouping customers

customer segmentation

Classifying customers based on various factors helps banks to serve customers better. One famous algorithm for clustering in K-means, an interactive grouping algorithm that tries to find the ideal number of groups by executing the algorithm steps in loops. 

c) Relative customer comparison

The availability of all customer’s data helps banks to compare individuals with the same spending or behavioral patterns. This helps the bank in qualitative predictions about customer requirements and in marketing similar products to similar customers.

Read our popular Data Science Articles

d) Managing customer data

With the emergence of digital banking, every tom and harry has got a bank account. This led to zettabytes and yottabytes of customer data being stored on the banks’ storage repository. Not all these data are going to be useful and relevant. Data science helps banks to isolate the necessary and appropriate data and use them to predict customer behaviors iteratively, interactions, and preferences.

e) Prediction of Customer Lifetime Value (CLV)

Banks need to predict future revenues based on inputs from the past. This is best done using predictive data analytics in banking to calculate the future values of each customer. This helps in segregating customers, identifying the ones with high future value, and investing more resources on them in terms of customer service, offers, and discounted pricing. The primary data science tools used for this purpose are Generalized Linear Models (GLM) and Classification and Regression Trees (CART).

f) Risk Modeling 

Risk prediction has become a primary concern for banks with risky credit products as well as investment banks. 

       Credit risk modeling 

This allows banks to predict how their loans are going to be repaid and to foresee a defaulter based on past history and credit report. The risk modeling calculates a risk value for each case and the Credits Team only sanctions loans based on this Score.  

       Investment Risk modeling 

Risk modelling is also used in investment banking, wherein risk-rewards ratios are calculated for risky investments. This helps in giving investment advice to customers as well as making the right decision in internal investment to generate profits for a fund.

Explore our Popular Data Science Courses

g) Personalized marketing

Business earns their bread and butter when customers purchase new products. Data analytics in banking provides opportunities to model customized offers that suit individual customer needs. These offers are then applied to the right products and delivered to the right customers at the right time. 

h) Recommendation engines

This is one of the simple applications of data science wherein algorithms are used to filter and analyze user activity in order to suggest related and relevant items. Algorithms take in a lot of historical data, including transaction information, profile data, and similarity calculations to predict the most accurate associated items or products. There are two types of algorithms that work in customer-centric fashion or a product-centric fashion. They are known as “User-Based Collaborative filtering” and “Item Based collaborative filtering” respectively. 

i) Real-time predictive analysis

In the banking sector, every user transaction is treated as a source of data on which analytics can be applied to decipher useful prediction and information. Predictive analysis is the process of using computational algorithms to predict futuristic events and trends. The use of data analysis in banking has come to rise mainly for these predictions. There are mostly two major prediction types

  1. Real-time analytics allows banks to understand the current problem that disrupts their business
  2. Predictive analytics that enables banks to realize a future problem and to select appropriate steps to take necessary preventive actions to mitigate any possible impact on business.

upGrad’s Exclusive Data Science Webinar for you –

Transformation & Opportunities in Analytics & Insights

j) Customer Support

Excellent customer support helps maintain a long-term relationship with customers. It includes responding to customer’s queries and addressing their issues and complaints in a wholesome and timely fashion. Data science help create a targeted customer support service by automating and accurately presenting customer data to support specialist while he is on communication with the customer.

Top Data Science Skills to Learn

Conclusion

To keep up with the competition, almost all the major players in the banking segment have adopted data science techniques to deliver best businesses and value to customers. These are just a few areas of implementation of data science in banking. In the coming areas, the number and potency of the applications is only expected to increase further.

Profile

upGrad

Blog Author
We are an online education platform providing industry-relevant programs for professionals, designed and delivered in collaboration with world-class faculty and businesses. Merging the latest technology, pedagogy and services, we deliver an immersive learning experience for the digital world – anytime, anywhere.

Frequently Asked Questions (FAQs)

1Is Python useful in the case of investment banking?

It is known that Python is user friendly due to its simple syntax. Apart from it being easy to learn and use, it has applications in many fields. Banking is one of those. Python is being used by banks to solve problems related to risk management, trade management and pricing as well.

2How is big data useful for banks?

Big data has managed to change the bank culture by building service history and customer profiles effectively. No doubt, individualized customer profiles do create a positive impact on clients and make them rely on the bankers. Customers can now transfer money, deposit checks, and pay bills all from their mobile devices due to online banking. With big data analytics, the human contact that has historically been utilized to study consumer behavior and provide solutions for trouble areas has gone digital.

3Do ML based algorithms function in a better way when it comes to fraud detection in banks?

Unlike rule-based systems, ML based systems recognize and detect thousands of patterns quickly. Without being explicitly programmed, machine learning can evaluate millions of data sets in a short amount of time to improve outcomes. To identify fraud, automate trading processes, and give financial advice services to investors, machine learning algorithms are utilized.

Explore Free Courses

Suggested Blogs

Top 12 Reasons Why Python is So Popular With Developers in 2024
99361
In this article, Let me explain you the Top 12 Reasons Why Python is So Popular With Developers. Easy to Learn and Use Mature and Supportive Python C
Read More

by upGrad

31 Jul 2024

Priority Queue in Data Structure: Characteristics, Types & Implementation
57691
Introduction The priority queue in the data structure is an extension of the “normal” queue. It is an abstract data type that contains a
Read More

by Rohit Sharma

15 Jul 2024

An Overview of Association Rule Mining & its Applications
142465
Association Rule Mining in data mining, as the name suggests, involves discovering relationships between seemingly independent relational databases or
Read More

by Abhinav Rai

13 Jul 2024

Data Mining Techniques & Tools: Types of Data, Methods, Applications [With Examples]
101802
Why data mining techniques are important like never before? Businesses these days are collecting data at a very striking rate. The sources of this eno
Read More

by Rohit Sharma

12 Jul 2024

17 Must Read Pandas Interview Questions & Answers [For Freshers & Experienced]
58170
Pandas is a BSD-licensed and open-source Python library offering high-performance, easy-to-use data structures, and data analysis tools. The full form
Read More

by Rohit Sharma

11 Jul 2024

Top 7 Data Types of Python | Python Data Types
99516
Data types are an essential concept in the python programming language. In Python, every value has its own python data type. The classification of dat
Read More

by Rohit Sharma

11 Jul 2024

What is Decision Tree in Data Mining? Types, Real World Examples & Applications
16859
Introduction to Data Mining In its raw form, data requires efficient processing to transform into valuable information. Predicting outcomes hinges on
Read More

by Rohit Sharma

04 Jul 2024

6 Phases of Data Analytics Lifecycle Every Data Analyst Should Know About
82932
What is a Data Analytics Lifecycle? Data is crucial in today’s digital world. As it gets created, consumed, tested, processed, and reused, data goes
Read More

by Rohit Sharma

04 Jul 2024

Most Common Binary Tree Interview Questions & Answers [For Freshers & Experienced]
10561
Introduction Data structures are one of the most fundamental concepts in object-oriented programming. To explain it simply, a data structure is a par
Read More

by Rohit Sharma

03 Jul 2024

Schedule 1:1 free counsellingTalk to Career Expert
icon
footer sticky close icon