Cluster Analysis in Data Mining: Applications, Methods & Requirements

Here we are going to discuss Cluster Analysis in Data Mining. So first let us know about what is clustering in data mining then its introduction and the need for clustering in data mining. We are also going to discuss the algorithms and applications of cluster analysis in data mining. Later we will learn about the different approaches in cluster analysis and data mining clustering methods.

What is Clustering in Data Mining?

In clustering, a group of different data objects is classified as similar objects. One group means a cluster of data. Data sets are divided into different groups in the cluster analysis, which is based on the similarity of the data. After the classification of data into various groups, a label is assigned to the group. It helps in adapting to the changes by doing the classification.

Read: Common Examples of Data Mining.

What is Cluster Analysis in Data Mining?

Cluster Analysis in Data Mining means that to find out the group of objects which are similar to each other in the group but are different from the object in other groups.

No Coding Experience Required. 360° Career support. PG Diploma in Machine Learning & AI from IIIT-B and upGrad.

Applications of Data Mining Cluster Analysis

There are many uses of Data clustering analysis such as image processing, data analysis, pattern recognition, market research and many more. Using Data clustering, companies can discover new groups in the database of customers. Classification of data can also be done based on patterns of purchasing.

Clustering in Data Mining helps in the classification of animals and plants are done using similar functions or genes in the field of biology. It helps in gaining insight into the structure of the species. Areas are identified using the clustering in data mining. In the database of earth observation, lands are identified which are similar to each other.

Based on geographic location, value and house type, a group of houses are defined in the city. Clustering in data mining helps in the discovery of information by classifying the files on the internet. It is also used in detection applications. Fraud in a credit card can be easily detected using clustering in data mining which analyzes the pattern of deception. Read more about the applications of data science in finance industry.

It helps in understanding each cluster and its characteristics. One can understand how the data is distributed, and it works as a tool in the function of data mining.

Requirements of Clustering in Data Mining

  • Interpretability

The result of clustering should be usable, understandable and interpretable.

  • Helps in dealing with messed up data

Usually, the data is messed up and unstructured. It cannot be analyzed quickly, and that is why the clustering of information is so significant in data mining. Grouping can give some structure to the data by organizing it into groups of similar data objects. It becomes more comfortable for the data expert in processing the data and also discover new things.

  • High Dimensional

Data clustering is also able to handle the data of high dimension along with the data of small size.

  • Attribute shape clusters are discovered

Arbitrary shape clusters are detected by using the algorithm of clustering. Small size cluster with spherical shape can also be found.

  • Algorithm Usability with multiple data kind

Many different kinds of data can be used with algorithms of clustering. The data can be like binary data, categorical and interval-based data.

Read: Data Mining Algorithms You Should Know

  • Clustering Scalability

The database usually is enormous to deal with. The algorithm should be scalable to handle extensive database, so it needs to be scalable.

Data Science Advanced Certification, 250+ Hiring Partners, 300+ Hours of Learning, 0% EMI

Data Mining Clustering Methods

1. Partitioning Clustering Method

In this method, let us say that “m” partition is done on the “p” objects of the database. A cluster will be represented by each partition and m < p. K is the number of groups after the classification of objects. There are some requirements which need to be satisfied with this Partitioning Clustering Method and they are: –

  1. One objective should only belong to only one group.
  2. There should be no group without even a single purpose.

There are some points which should be remembered in this type of Partitioning Clustering Method which are:

  1. There will be an initial partitioning if we already give no. of a partition (say m).
  2. There is one technique called iterative relocation, which means the object will be moved from one group to another to improve the partitioning.

2. Hierarchical Clustering Methods

In this hierarchical clustering method, the given set of an object of data is created into a kind of hierarchical decomposition. The formation of hierarchical decomposition will decide the purposes of classification. There are two types of approaches for the creation of hierarchical decomposition, which are: –

1. Divisive Approach

Another name for the Divisive approach is a top-down approach. At the beginning of this method, all the data objects are kept in the same cluster. Smaller clusters are created by splitting the group by using the continuous iteration. The constant iteration method will keep on going until the condition of termination is met. One cannot undo after the group is split or merged, and that is why this method is not so flexible.

2. Agglomerative Approach

Another name for this approach is the bottom-up approach. All the groups are separated in the beginning. Then it keeps on merging until all the groups are merged, or condition of termination is met.

There are two approaches which can be used to improve the Hierarchical Clustering Quality in Data Mining which are: –

  1. One should carefully analyze the linkages of the object at every partitioning of hierarchical clustering.
  2. One can use a hierarchical agglomerative algorithm for the integration of hierarchical agglomeration. In this approach, first, the objects are grouped into micro-clusters. After grouping data objects into microclusters, macro clustering is performed on the microcluster.

3. Density-Based Clustering Method

In this method of clustering in Data Mining, density is the main focus. The notion of mass is used as the basis for this clustering method. In this clustering method, the cluster will keep on growing continuously. At least one number of points should be there in the radius of the group for each point of data.

4. Grid-Based Clustering Method

In this type of Grid-Based Clustering Method, a grid is formed using the object together. A Grid Structure is formed by quantifying the object space into a finite number of cells.

Advantage of Grid-based clustering method: –

  1. Faster time of processing: The processing time of this method is much quicker than another way, and thus it can save time.
  2. This method depends on the no. of cells in the space of quantized each dimension.

5. Model-Based Clustering Methods

In this type of clustering method, every cluster is hypothesized so that it can find the data which is best suited for the model. The density function is clustered to locate the group in this method.

6. Constraint-Based Clustering Method

Application or user-oriented constraints are incorporated to perform the clustering. The expectation of the user is referred to as the constraint. In this process of grouping, communication is very interactive, which is provided by the restrictions.

What kinds of classification is not considered a cluster analysis?

  1. Graph Partitioning – The type of classification where areas are not the same and are only classified based on mutual synergy and relevance is not cluster analysis.
  2. Results of a query – In this type of classification, the groups are created based on the specification given from external sources. It is not counted as a Cluster Analysis.
  3. Simple Segmentation – Division of names into separate groups of registration based on the last name does not qualify as Cluster Analysis.
  4. Supervised Classification – Those type of classification which is classified using label information cannot be said as Cluster Analysis because cluster analysis involves group based on the pattern.


So now we have learned many things about Data Clustering such as the approaches and methods of Data Clustering and Cluster Analysis in Data mining. 

If you are curious to learn data science, check out our PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.

PG Diploma in Data Science

Explore Now!

Leave a comment

Your email address will not be published.