- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
A Career in Big Data – The Sky’s the Limit
Updated on 03 July, 2023
6.02K+ views
• 11 min read
Share
Table of Contents
- What is Big Data?
- Why Choose Big Data as a Career?
- Career In Big Data: Skillset & Educational Background Requirement
- Is Big Data a Low-Risk Career?
- Why are Industries Looking at Big Data?
- Big Data Career Opportunities and Roles
- upGrad- The Start of your Journey in Big Data
- upGrad offers the following courses in Big Data
- Key Features of upGrad Programs
- Wrapping up
A Career in Big Data offers massive growth opportunities where the sky’s the limit. The world is becoming digital at a breakneck pace, which means Big Data career opportunities will also increase. Most major companies acknowledge the importance of Big Data as a way to acquire meaningful insights to make valuable decisions.
Under Big Data, large amounts of data are collected to be used for analysis, prediction, and decision making. The demand for Big Data experts increases day by day.
What is Big Data?
Big Data can gather and store large volumes of data. It provides velocity to allow real-time data flow for quick processing. It gives support to different types of data formats, whether it is structured, unstructured, or semi-structured. It doesn’t matter if it is represented in alphabetic, numeric, alphanumeric, or even visual formats.
It can be collected from multiple heterogeneous sources. Big data analytics is versatile. It can deal with all complexities present in data and deliver the best results by using the right combination of Artificial Intelligence, Machine learning, IoT applications, and other tools.
Why Choose Big Data as a Career?
According to Indeed Hiring Lab, January 2019, Data Science or Big Data Career-related posting has increased by 256% compared to December 2013. The demand for Big Data experts is already high. This demand will increase tremendously in the future too. However, the growth rate of skilled workers in the Big Data field is slow.
Based on the LinkedIn Workforce Report Published on Aug 10, 2018, there was a tremendous growth rate in demand for Data Scientists from 2015 to 2018.
Explore our Popular Software Engineering Courses
Some of the main reasons for selecting Big data as a career are:
Demand
Most companies want Big Data professionals to handle vast amounts of data and to deal with competitors. This demand gains momentum every day.
The shortfall of Big Data Professionals
The number of Big Data professionals is very less in comparison to demand. Hence, the chances of bright career are higher in this field.
Availability of Various Roles
Big data jobs consist of different categories in the job title.
Big data has three core analytical domains:
- Futuristic Analytics
- Rule-based Analytics
- Illustrative Analytics
Versatile roles and responsibilities are offered to big data professionals. They can choose from it based on their preference and interest.
Explore Our Software Development Free Courses
High Rewards
The requirement for big data professionals is increasing. So, companies are offering excellent salary packages to candidates. That’s why a career in Big Data is considered a fruitful one for working professionals searching for significant career progression.
Thus, you should make the best out of career opportunities in Big Data.
Career In Big Data: Skillset & Educational Background Requirement
It’s important to remember that there is no formal certificate or degree related to big data when discussing the educational trajectory and competencies needed to become a professional in it. Even so, there are specific abilities that could determine your career in big data.
You can provide the ideal groundwork for your Big Data job path by earning a bachelor’s or master’s degree in any mathematics-focused discipline.
Otherwise, if you are interested in this field but lack the necessary expertise, acquiring the necessary skills via well-designed IT programs and passing the necessary certification examinations would enable you to work in the Big Data industry like a pro.
Experts suggest building and enhancing your Big Data skills over time to become industry-ready. Start off with Hadoop, which is a popular open-source framework used to store data and run applications. Another skill to acquire is SQL querying and database.
While some companies go for basic SQL, others prefer advanced SQL skills in a big data professional. Lastly, you should also have proper data mining skills, which means the ability to examine vast database for producing new insights.
Is Big Data a Low-Risk Career?
Even in the current COVID-19 pandemic situation where most people worldwide lost their jobs or are at high risk of losing their jobs, demand for big data professionals is increasing exponentially. All countries are trying to analyze data to discover the facts and make predictions.
Most fields including medical science are now severely dependent on data to find new updates with real-time conditions and formulate solutions. Only with the help of big data analytics and tools can scientists aggregate and synthesize data at the global level in this pandemic. Big Data helps to deal with this crisis and mitigate its impact.
Not only does the healthcare or medical sector benefit from big data capabilities. Almost all sectors and industries take advantage of Big Data. Therefore, Big Data career opportunities are present in all sectors.
In-Demand Software Development Skills
Why are Industries Looking at Big Data?
As a large amount of data is generated from different sources, industries deal with massive data sets, which are spread in a very scattered pattern. It’s challenging for them to discover meaningful findings that can help the business and fulfill customer demands. In such a scenario, big data helps them to work effectively and efficiently and face the challenges coming from competitors. The support of new technologies and tools combined with AI, machine learning (ML), and deep learning (DL) give the field a unique edge.
Previously, due to limited storage features, upholding data was more problematic than advantageous to companies. Likewise, stemming out meaningful insights from data manually was also very complicated. AI and Data Science technologies have shaped new prospects to use the possibility of big data analytics worldwide more effectively.
Big data, analyzing, and processing massive datasets has become easy, effective, and fast. That’s why most companies have started incorporating data into their major functions. The evolution of the digital economy has begun.
The introduction of Big Data is likely to increase the variety and volume of data. Based on the McKinsey report, the amount of data produced will double every three years. This has created a need for data analytics techniques and skills across all industries. To do so, companies need to involve Big Data experts.
This is the perfect time to join the Big data movement and learn Big Data as all major companies are heading towards Big Data.
Big Data Career Opportunities and Roles
There are various roles on offer in the field of Big Data. Your choice should be based on your interest and skills. Remember, you need passion and curiosity to become a Big Data Professional.
Big Data Career Roadmap Points to the Following Roles
- Data Scientist
- Data Analyst
- Big Data Architect
- Statistician
- Big Data Engineer
- Business Analyst
- Machine Learning Engineer
- Data Engineer
- Machine Learning Scientist
- Business Analytics Specialist
- Data Visualization Developer
- Business Intelligence (BI) Engineer
- BI Solutions Architect
- BI Specialist
- Analytics Manager
Data Scientist:
Data scientist, one of the high-paying big data jobs, requires you to possess strong technical and analytical skills. By gleaning valuable insights from the data they collect from various sources, data scientists add value to the information.
Data Analyst:
Data Analysts extract relevant and crucial information from datasets by using analytics skills and big data technology solutions like Pig, Hive, Hadoop, etc.
Data Architect:
Building and maintaining the aforementioned databases, data architects also create the frameworks for complicated data frameworks. They are entrusted with creating plans, updating executives on difficulties, and conveying plans for every topic area of the business data model.
Big Data Engineer:
Big data engineer jobs are on the rise, and this career option is indeed challenging as well as rewarding. The experts tasked with constructing the designs produced by Solution Architects are known as Data Engineers.
Business Intelligence Analyst:
Big data warehouse management and tackling the problems associated with it are the purview of business intelligence engineers. Online analytical processing (OLAP), data cube technology, and database query competence are all prerequisites for business intelligence.
Machine Learning Engineer:
Machine learning is now an essential component of big data. As a machine learning expert, you hold the charge of developing the data analysis software that runs the product code automatically.
Data Visualization Developer:
Development, design, and delivery of production support for data visualizations that will be utilized throughout an enterprise are the responsibilities of a data visualization developer and analyst. These developers use any visual representation of data to convey the meaning of the data.
Business Analytics Specialist:
Business analytics specialists support some of the development projects as well as numerous testing operations. They could also work on research projects that help them comprehend business needs and problems and create appropriate scripts.
Popular Articles related to Software Development
The Need for Certification in Big Data
With the increase in career opportunities in Big Data or Data Science, people are looking for a perfect place from where they can gain skills and begin a successful career in this upcoming field. Employers are looking for such expertise from applicants that can not be fulfilled by doing boot camps or short term courses.
It’s not enough to handle complex tasks, decision making, and future forecasting with the help of such things. The right kind of certification in Big Data can increase the chance to acquire the best Big Data career opportunities.
upGrad- The Start of your Journey in Big Data
We have trained numerous learners to date. Currently, more than 20,000 active learners are benefitting from our services and program. We are fortunate to have more than 300 hiring partners that provide the best Big Data career opportunities. Our learners witness approximately a 52% average salary hike.
upGrad is the best place to undertake a course in Big Data.
This is because:
Best Learning Partners
Our programs are some of the best in the world because we are working rigorously to deliver the best learning and teaching practices. Some of our learning partners are the International Institute of Information Technology-Bangalore, NMIMS Global Access School for Continuing Education, Indian Institute of Technology-Madras, Institute of ManagementTechnology-Ghaziabad(Delhi), MICA, Liverpool John Moores University, Duke Corporate Education, and Deakin University.
Career Fairs and Hackathons
Along with world-class skill enhancement, we also provide career-building support by organizing recruitment drives. Our learners have a chance to get a job in the best industries with multiple opportunities. We initiate hackathons that make learners industry-ready.
Career Mentors
We discover the best career opportunity for learners. We mentor them to achieve their goals. Also, we prepare them from the beginning to the end of the job-hunting journey.
Mentoring by Industry
We offer guidance from industry experts for individuals. We conduct sessions for you to land a job.
Our programs help to enhance and boost the skillset, knowledge, and calibre by offering top-notch courses and certification in collaboration with topmost universities, institutions, companies, to make your career in Big Data.
Learn: How to Become a Big Data Engineer
upGrad offers the following courses in Big Data
PG Diploma in Data Science
Predictive Analytics using Python, Machine Learning, Big Data, Natural Language Processing, Data Visualization.
PG Certification-Data Science
Machine Learning, Data Visualisation, Statistics, Predictive Analytics using Python, MySQL, and many more.
Masters in Data Science
Statistics, Predictive Analytics using Python, Machine Learning, Data Visualization, Big Data Analytics, and many more.
Key Features of upGrad Programs
- Designed for Working Professionals
- IIIT Bangalore Alumni Status
- 14 Programming Tools & Languages
- 60+ Industry Projects
- NASSCOM validated 1st PG Diploma
- 360 Degree of Career Support
- One-on-One with Industry Mentors
- Dedicated Student Mentor
- Job Assistance with Top Firms
- No Cost EMI Option
Wrapping up
Big Data is a growing field. It is gaining prominence with its potential application in many industries. Thus, a career in Big Data is the perfect choice for individuals looking for a long and stable career with high rewards. At upGrad, we offer various courses to enable you to achieve your dreams of succeeding in Big Data. So, make the most of Big Data career opportunities and look forward to a bright career.
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Frequently Asked Questions (FAQs)
1. Who is a Big Data Developer?
Professionals who are experts in fundamental scripting languages and are in charge of designing and developing Big Data applications are known as Big Data developers. They work with data that doesn't fit into a dedicated server and can't be processed in a typical way. The job resembles software development in specific ways. To meet an organisation's enormous data demands, most Big Data developers work collaboratively alongside engineers and scientists with Hadoop. They are in charge of Big Data application design, development, installation, configuration, and maintenance, along with ensuring the security of the tonnes of data stored in their databases. They also provide robust and high-performance online services for data tracking, analysis, and discovery of meaningful insights from large data sets.
2. What is the average salary of a Big Data developer in India?
Big Data is a prospering technology with a lot of scope for its professionals. The average salary of Big Data developers in India is around ₹7,00,000 per year. The salaries of most data developers range from ₹4,00,000 to ₹15,00,000 per year. The average salary of Big Data developers also varies according to their years of expertise. For professionals with 2-3 years of experience, their average salary is ₹5,70,000 per year. Big Data development professionals with 3-4 years of experience are ₹6,50,000 per year. The average salary of Big Data developers with experience of 6-7 years and 7-8 years is ₹9,40,000 and ₹10,10,000 per year, respectively.
3. What are the skills required to be a Big Data Developer?
As Big Data development is a burgeoning industry with a lot of room for advancement, Big Data developers have a bright future. You must learn a few skills if you want to be a good Big Data Developer. To begin, these developers must have a solid understanding of programming languages such as Java, JS, Node.JS, and other object-oriented languages. A Big Data developer should also be familiar with Hadoop and its many modules, such as Flume, Common, Hive, Hbase, Pig, Impala, Spark, Storm, and others. Finally, Big Data developers should have a strong knowledge of multi-threading and concurrency ideas.
Did you find this article helpful?
Rohit Sharma is the Program Director for the UpGrad-IIIT Bangalore, PG Diploma Data Analytics Program.
See MoreGet Free Consultation
By clicking "Submit" you Agree toupGrad's Terms & Conditions
Explore Free Courses
SUGGESTED BLOGS
5.73K+
From IT to Big Data – BITS Pilani Launches PG Program in Association with UpGrad
Looking to upskill IT professionals for a $100 billion opportunity in Data and Digital, BITS Pilani has launched a new program in Big Data Engineering, in association with UpGrad.
As per recent industry estimates, radical technology changes and increasing automation is expected to lead to an elimination of almost 20-30% jobs in the Indian IT sector, amounting to over 1 million layoffs. Most of these jobs need to be repositioned to avoid a net loss of jobs in this sector. New age technologies in digital and data, which are re-defining several existing roles. It represents an estimated $100 billion revenue opportunity for the IT industry and can potentially create 1.5-2 million additional jobs in the sector, by 2025.
The most important task ahead, for the young professionals working in the IT and allied sectors, and who form a large part of India’s consumption story and its middle class, is to re-skill while working. The rapid changes occurring across industries and businesses are likely to affect them the most.
upGrad’s Exclusive Software Development Webinar for you –
SAAS Business – What is So Different?
document.createElement('video');
https://cdn.upgrad.com/blog/mausmi-ambastha.mp4
For these professionals, online education presents a valuable option to stay relevant without quitting their jobs. Recognizing the needs of these professionals and the Industry, BITS Pilani has launched an online Post-Graduate Program in Big Data Engineering, in association with UpGrad. The program will train students in areas like Batch Processing, Real-Time Data Processing, and Big Data Analytics.
Recent industry estimates expect Big Data & Analytics to grow at a 26% CAGR to $16 billion by 2025 – creating a need for almost a million data engineers. Prof. Sundar (Director – Off-Campus Programmes & Industry Engagement, BITS Pilani) says,
“Big Data is increasingly finding adoption in all critical business applications. For this domain to realize its full potential, there is a need for high-quality technical talent in large numbers.”
On the other hand, online education is widely gaining acceptance.
“In the last couple of years, online as a platform has matured. It has the potential to provide a transformative learning experience to professionals in India, at a large-scale. Through this program with BITS Pilani, we hope to empower many individuals to meet their full professional potential,”
added Ronnie Screwvala and Mayank Kumar, Co-founders of UpGrad.
Speaking on the partnership with UpGrad, Prof. Gurunarayanan (Dean – Work Integrated Learning Programmes, BITS Pilani) mentioned,
“BITS Pilani has a long history of providing quality technical education. The prospect of combining our subject matter expertise with UpGrad’s ability to deliver quality online learning experience to a large number of students is very exciting.”
Explore Our Software Development Free Courses
Fundamentals of Cloud Computing
JavaScript Basics from the scratch
Data Structures and Algorithms
Blockchain Technology
React for Beginners
Core Java Basics
Java
Node.js for Beginners
Advanced JavaScript
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Explore our Popular Software Engineering Courses
Master of Science in Computer Science from LJMU & IIITB
Caltech CTME Cybersecurity Certificate Program
Full Stack Development Bootcamp
PG Program in Blockchain
Executive PG Program in Full Stack Development
View All our Courses Below
Software Engineering Courses
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
In-Demand Software Development Skills
JavaScript Courses
Core Java Courses
Data Structures Courses
Node.js Courses
SQL Courses
Full stack development Courses
NFT Courses
DevOps Courses
Big Data Courses
React.js Courses
Cyber Security Courses
Cloud Computing Courses
Database Design Courses
Python Courses
Cryptocurrency Courses
Read our Popular Articles related to Software Development
Why Learn to Code? How Learn to Code?
How to Install Specific Version of NPM Package?
Types of Inheritance in C++ What Should You Know?
Read More03 Aug'17
5.7K+
Big Data Roles and Salaries in the Finance Industry
With the rapid advancement of Big Data, its power and influence are increasing very rapidly. Likewise, technologies, applications, and opinions based on Big Data are swiftly rising. Big Data may be the next big thing or utterly dead; a panacea or menace; the key to all future innovation or just a hollow branding term. Between these extremes, Big Data is an important area of focus for consumer finance. It has the potential to support and scale consumer financial health.
Big Data’s Evolution in Consumer Finance
Big data is a set of tools that can be used for creating, refining, and scaling financial solutions. It is sewn into the consumer financial services marketplace, in sophisticated ways. It is instructive to examine the greatest potential areas for the further development of big data. Also, the ways to foster its use in a safe, responsible, and beneficial manner on a large scale.
Big data is now a fundamental element of risk-profiling for the banks. Analysts can study the impact of geopolitical escalations on different market segments. Now, banks can map out market-shaping events in the past to predict future patterns.
Investment banks are using big data to analyse the effectiveness of their deals. They do this by studying the insights of trades they did or did not win on a client-by-client basis.
The data systems at most banks are not like retail giants or startups or fin-tech companies. They were not constructed to analyse structured and unstructured data. Remodeling the entire IT and data systems needed a deep analysis of a bank’s data. Updating is very time-consuming and costly.
Some banks have merged or acquired other banks or financial services businesses. These are facing even more complex issues while incorporating and updating IT systems. This is where big data can prove to be a game changer.
Explore our Popular Software Engineering Courses
Master of Science in Computer Science from LJMU & IIITB
Caltech CTME Cybersecurity Certificate Program
Full Stack Development Bootcamp
PG Program in Blockchain
Executive PG Program in Full Stack Development
View All our Courses Below
Software Engineering Courses
Surge in hiring of big data analytics specialists
The competition between banks and fund managers to hire big data specialists is heating up. Banks are actively recruiting to fill two main, but different roles: Big Data Engineers and Data Scientists/Analyst.
Big Data Engineers are coming from a strong IT background. They have development or coding experience and are responsible for designing data platforms and applications.
Data Scientists, in contrast, are bridging the gap between data analytics and business decision making. They’re capable of translating complex data into key strategic insight. Data scientists are also known as analytics and insights manager or director of data science. They should have sharp technical and quantitative skills.
Explore Our Software Development Free Courses
Fundamentals of Cloud Computing
JavaScript Basics from the scratch
Data Structures and Algorithms
Blockchain Technology
React for Beginners
Core Java Basics
Java
Node.js for Beginners
Advanced JavaScript
Organisations working with Big Data, like Investment Banks usually follow this hierarchical structure:
Junior Associate –
A big data developer mainly working on Hadoop, Spark, Sqoop, Pig, Hive, HDFS, HBase. They’d have 5-6 years of industry experience in basic Java/Python/Scala programming.
Salary Range: INR 12-18 Lakhs per annum
Senior Associate –
A big data senior developer working on Hadoop, Spark, Sqoop, Pig, Hive, HDFS, HBase. They’d have an industry experience of 7 to 10 years in advanced Java/Python/Scala programming.
Salary Range: INR 18-25 Lakhs per annum
Vice President –
A big data architect with architecture experience in Hadoop, Spark, Hive, Pig, Sqoop, HDFS, HBase. They’d have expert programming knowledge in Java/Python/Scala with 10 to 15 years of experience.
Salary Range: INR 25-50 Lakhs per annum
The salaries of Big Data Engineers/Architects are 15-20% higher than other technologies in the current market scenario.
Combining massive data sets thoughtfully can lead to greater accuracy and granularity. Financially underserved consumers often have unique combinations of needs. Thus, tools allowing scalable tailored services at low costs are vital to the mutual success of consumers and providers.
However, the Big Data mosaic effect has also often raised concerns about its potential risk to consumer privacy, combining large data results in overly sensitive insights.
From my experience, a career in Big Data is extremely rewarding in the present scenario, especially in the financial sector. Huge volumes of data are threatening technologies like data warehousing. I have shifted in my own career from being a data warehouse architect into big data and data science as that is the need of the hour.
What do you think will be the impact of Big Data and other data technologies in the near future? Comment below and let us know.
In-Demand Software Development Skills
JavaScript Courses
Core Java Courses
Data Structures Courses
Node.js Courses
SQL Courses
Full stack development Courses
NFT Courses
DevOps Courses
Big Data Courses
React.js Courses
Cyber Security Courses
Cloud Computing Courses
Database Design Courses
Python Courses
Cryptocurrency Courses
Conclusion
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Read our Popular Articles related to Software Development
Why Learn to Code? How Learn to Code?
How to Install Specific Version of NPM Package?
Types of Inheritance in C++ What Should You Know?
Read Moreby G Ram
13 Oct'177.72K+
Know all about the backbone of Aadhaar – Big Data!
Do you ever wonder how Aadhaar data belonging to more than 1.32 billion Indian citizens is stored? How the generation of one million Aadhaar numbers is achieved by performing 600 trillion matches in a day? Have you ever wondered how 100 million authentications are undertaken; establishing the identity of a person by UIDAI in a day?
This article aims to provide answers to these questions. Along the way, this article will enumerate the requirement of Aadhaar and the two essential tasks of the UIDAI, i.e. enrollment and authentication. UIDAI has leveraged big data technologies like open scale-out, open-source, cheap commodity hardware, distributed computing technologies, etc. in handling and processing vast amounts of data.
Aadhaar a necessity?
The Indian Government was spending about 25 to 40 billion dollars on direct subsidies. According to CIA World Factbook, the GDP of North Korea was 40 billion for the year 2014.
We are spending the equivalent of North Korea’s GDP on direct subsidies.
The problem is not the subsidy, but the leakage of it. Most programs suffered due to ghost and multiple identities. Indians didn’t have any standard identity document. We possess many certificates viz., driving license, PAN card, voter card, etc. issued by central and state government authorities. All these certificates/cards were domain restricted. It was difficult to establish the identity of a person with these cards issued by the government.
So, there was a need felt for a document which could uniquely determine the identity of a person. Thus, one of the most challenging projects ever took birth. The task of providing identification to one billion people, i.e. one-sixth of the world’s population.
Explore our Popular Software Engineering Courses
Master of Science in Computer Science from LJMU & IIITB
Caltech CTME Cybersecurity Certificate Program
Full Stack Development Bootcamp
PG Program in Blockchain
Executive PG Program in Full Stack Development
View All our Courses Below
Software Engineering Courses
Big Data Roles and Salaries in the Finance Industry
Tasks performed by UIDAI
Two critical tasks performed by the UIDAI are enrollment and authentication. Enrollment is the process of providing a new Aadhaar number to a citizen. Authentication is the process of establishing the identity of a person. Both are entirely different beasts with their peculiar challenges.
Enrollment is an asynchronous process. An Aadhaar number is not provided instantaneously. The Aadhaar number is generated after some days of data collection. Processing of every enrollment requires matching ten fingerprints, both irises, and demographics with every existing record in the database. Currently, UIDAI is processing one million Aadhaar numbers a day. With the Aadhaar database at 600 million, processing 1 million enrollments every day roughly translates to about 600 trillion matches every day.
Explore Our Software Development Free Courses
Fundamentals of Cloud Computing
JavaScript Basics from the scratch
Data Structures and Algorithms
Blockchain Technology
React for Beginners
Core Java Basics
Java
Node.js for Beginners
Advanced JavaScript
The number game
Do you know how many years do one trillion seconds make? More than 31,000 years. Can you imagine the height of a tower that would be created by stacking one trillion pennies on top of each other? It will be more than 8,70,000 miles. One trillion ants will weigh more than 3000 tons. Six hundred trillion is a one followed by fourteen zeros. Besides storing such humongous amount of data, processing 600 trillion biometric matches in a day is beyond anyone’s wildest dreams.
On the other hand, imagine if a person wants to open a bank account. He approaches a bank employee. This employee wants to check if this person is who he is claiming to be before opening his bank account. This authenticity check can’t run forever; then no customer will be willing to open an account with that bank. Authentication is expected to be performed within quick seconds, even when the authentication volume is a few 100 million requests every day. Authentication is synchronous and needs to happen very fast.
In-Demand Software Development Skills
JavaScript Courses
Core Java Courses
Data Structures Courses
Node.js Courses
SQL Courses
Full stack development Courses
NFT Courses
DevOps Courses
Big Data Courses
React.js Courses
Cyber Security Courses
Cloud Computing Courses
Database Design Courses
Python Courses
Cryptocurrency Courses
What’s the Difference between Data Science, Machine Learning and Big Data?
Now let us see how the architectural principles established with UIDAI help in achieving the tasks of enrollment and authentication efficiently and effortlessly.
Architectural Principles
Scale-Up
Up until the 90s Information Technology systems used to be monolithic, involving both technology and vendor lock-in. Once investment was made, it was challenging to break away from a particular vendor and technology. Advantage can’t be taken of the advancement in technology or drop in hardware and other costs. The only option was to ‘Scale-Up’ with the same vendor and technology.
Scale-Out
From the 90s to mid-2000s, the software with horizontal scaling capability at the application server layer came into existence. Even though it was possible to scale horizontally, it was tied up to a particular database vendor or application vendor. Here, there was no technology, but vendor lock-in. Here typically the computing environment, i.e. the hardware and OS used was similar across all application server nodes.
A Love Story Begins with Open Scale-Out
Open Scale-Out
This phase started from mid-2000 onwards. Here the system architecture is vendor and technology neutral. There is no lock-in with any technology or vendor. Infinite scope for scaling and interoperability exists. UIDAI achieved open scale-out with the help of cheap commodity hardware.
Commodity Hardware
Commodity hardware is nothing but that which is affordable and accessible. It has nothing special in it which is typically used by enterprise systems. The entire UIDAI hardware infrastructure is composed of cheap Linux based personal computers and blade servers. The advantage of commodity hardware is that the cost and the initial investment are meager. The architecture is scalable when the requirement exists. Equipment can be purchased from any vendor and plugged in for scaling the architecture. The advantage of a price drop in the future can also be used while scaling the infrastructure. The open source technology, which is used to cluster commodity hardware is known as Hadoop.
Distributed Computing & Open Source
Imagine how it would be if a monolithic structure did all the processing work required for generating an Aadhaar card. How significant would that structure be? How many processing cores are needed for 600 trillion matches a day? Is it possible to expand that structure if the number of matches required increases from 600 to 1200 trillion? How costly would that be?
For all these reasons, Aadhaar was implemented in a distributed commodity hardware. It is distributed not monolithic. The processing happens on many nodes at once, which reduces the execution times by many times. Distributed computing reduces the computation time, many times, which would take days in a traditional monolithic structure. The file system used in conventional sequential computing would not work in case of distributed computing.
Read our Popular Articles related to Software Development
Why Learn to Code? How Learn to Code?
How to Install Specific Version of NPM Package?
Types of Inheritance in C++ What Should You Know?
A distributed platform requires a specially designed file system.
Hadoop distributed file system (HDFS) is one such type of distributed file system. Special software is also needed to spread the workload between different nodes. On completion of processing at various nodes, this software should also aggregate the results. MapReduce is one such open source software which distributes and finally aggregates the processed results. Hive is a tool used to query the database distributed on the commodity hardware. Hive is very similar to SQL.
What Skill Development Really Means and Why It’s Important for Success
All these open source technologies like Hadoop, HDFS, MapReduce and Hive etc. come under the purview of Big data technologies. It is because of these technologies the processing time of computation, which would otherwise take days, can be reduced to mere minutes and at a very cheap cost. UIDAI entirely leveraged these technologies. It was implemented in a completely open scaleout fashion without any dependence on vendor or technology.
Kudos Team UIDAI!
Petabytes of data related to the identity of the citizens of a country, with a population more than one billion, is processed using open source technologies in a distributed fashion on commodity hardware. This is an astonishing feat of engineering which was successfully achieved by UIDAI. Team UIDAI deserves a thunderous applause for attaining this impossible feat.
The government should now think of creative ways to leverage this data in avoiding leaks that happen in its various direct subsidy programs. It should bring more transparency to financial transactions, prevent tax evasion, provide banking facilities to the poor, and other such crucial tasks. Then, we can achieve the status of a real ‘welfare nation’.
Wrapping up
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Read More14 Nov'17
5.89K+
Planning a Big Data Career? Know All Skills, Roles & Transition Tactics!
Do you know the skills and steps required to successfully transition to a Big Data career?
If you’re someone who doesn’t belong to the Big Data Industry yet but has a background which may have links to it – you may be thinking about a lucrative and long-term Big Data career.
If you’re aspiring to be a Big Data Engineer or a Team Lead/Tech Lead or even a Project Manager/Architect, there are some key technical skills required by employers in the Big Data Ecosystem. These skills vary for different Big Data Roles.
In this article, we will discuss the technical skills required by employers for different Big Data profiles. We’ll also discuss organisational expectations from different hierarchical levels and steps to make a successful Big Data career transition.
Essential Skills
Here are the essential skills needed for making a successful Big Data career transition:
Distributed Computing Big Data Environments
You should have hands-on skills in at least one of the many Hadoop Distributions (viz. Hortonworks, Cloudera, MapR, IBM Infosphere BigInsights). At this point in time, Cloudera distribution is the most deployed distribution.
Cloud Data Warehouses
Since there is an increased affinity towards moving from on-premise data warehousing solutions to cloud-based data warehousing solutions, you should have skills in technologies like Amazon Redshift or Snowflake. Redshift is a fully managed cloud-based petabyte-scale data warehousing solution.
NoSQL & NewSQL
You should have skills in some of the new emerging NoSQL technologies. For e.g. MongoDB (which is a document database) or Couchbase (which is a key-value store). Others like Cassandra and HBase are also popular. On the cloud, Amazon has specific databases like DynamoDB and SimpleDB (both key-value pair stores).
Data Integration & Visualisation
As you work on large-scale analytics projects, you will be ingesting data from multiple sources. Keeping this in mind, you should have knowledge of Big Data compliant integration technologies like Flume, Sqoop, Storm Kafka etc. Data Integration products like Informatica and Talend have also upgraded their capabilities to Big Data processing. In the world of visualisation, Tableau and QlikView are popular. They also integrate with other BI (business intelligence) reporting data stores.
Business Intelligence (BI)
Hands-on knowledge of Business Intelligence technologies is also helpful. There are several technologies available in BI. For e.g. IBM, Oracle and SAP have acquired BI suites. Microsoft’s BI stack is largely organically developed. Others like Microstrategy and SAS are also independent BI providers.
Big Data Testing
Big Data Testing is fundamentally different from traditional ETL and application testing because of the volume of data involved. The differences in test scenarios occur due to the velocity and variety of data. Also, in certain cases, execution of test cases requires scripting and programming skills (Pig scripts, Hive query language etc.).
Organisational Expectations and Hierarchical Responsibilities
An organisation has different expectations from different levels of the workforce:
Young Professionals (less than 5 years of overall experience)
People in this age group mostly work as Big Data Engineers. As a Big Data Engineer, you are expected to be conversant with the above-mentioned technologies in the form of hands-on skills. As engineers, you would be responsible for building, testing and deploying the Big Data solutions.
Explore Our Software Development Free Courses
Fundamentals of Cloud Computing
JavaScript Basics from the scratch
Data Structures and Algorithms
Blockchain Technology
React for Beginners
Core Java Basics
Java
Node.js for Beginners
Advanced JavaScript
Mid-Career Professionals (5 to 10 years overall experience)
People in this age group work as a team or tech leads. As a leader too, you are expected to be conversant in the above-mentioned technologies but will also be responsible for taking design decisions, conducting regular checkpoint reviews of the deliverables and providing overall technical guidance to the developers.
Senior Professionals (overall experience of more than 10 years)
Enterprise Architects: Enterprise architects are expected to be familiar with the above-mentioned technologies along with having a holistic view of the Big Data Landscape. As an architect, you are expected to be trusted partners of the clients, advising them on the right architecture, transformation strategy and roadmap, tool selection and vendor evaluation.
Project Managers: For a PM, managing a Big Data project team requires cross-functional team management skills – data warehousing teams, Business Intelligence teams, statisticians, domain experts and data teams. Knowledge management is another key skill. It is important to understand and plug knowledge gaps in the team. Further, a Big Data PM is expected to understand Agile methodologies to deliver the projects.
What’s the Difference between Data Science, Machine Learning and Big Data?
Explore our Popular Software Engineering Courses
Master of Science in Computer Science from LJMU & IIITB
Caltech CTME Cybersecurity Certificate Program
Full Stack Development Bootcamp
PG Program in Blockchain
Executive PG Program in Full Stack Development
View All our Courses Below
Software Engineering Courses
Transitioning to Big Data
The best way to make a Big Data career transition is by acquiring the relevant skills and then applying them in case studies/projects that simulate real-life scenarios. These could be part of a training program/education program, or through shadowing in-flight projects (or Proof of Concepts – PoCs) in existing organisations, wherever possible.
The following is a breakdown of the kind of activities practitioners can do in these case studies, according to the experience levels.
Young Professional (less than 5 years of overall experience)
You should be looking to acquire the skills through training programs/PoCs and then apply them to projects that simulate real-life scenarios.
Mid Career Professional (5 to 10 years overall experience)
You should drive technology solution discussions, coming up with designs and conducting reviews of work products and guiding teams during the case studies.
upGrad’s Exclusive Software Development Webinar for you –
SAAS Business – What is So Different?
document.createElement('video');
https://cdn.upgrad.com/blog/mausmi-ambastha.mp4
Senior Professionals (overall experience of more than 10 years)
You should be the one who kick-starts the execution of the case studies, acquiring a clear understanding of functional requirements, developing the solution strategy to meet project requirements within stipulated timelines and developing the project charter (PM roles) and overall technology solution (Architect roles).
This takes us to the question:
In-Demand Software Development Skills
JavaScript Courses
Core Java Courses
Data Structures Courses
Node.js Courses
SQL Courses
Full stack development Courses
NFT Courses
DevOps Courses
Big Data Courses
React.js Courses
Cyber Security Courses
Cloud Computing Courses
Database Design Courses
Python Courses
Cryptocurrency Courses
What should you look for in a good Big Data Program or Course?
The course should provide the right enablers for the participants to complete a Big Data career transition into these roles.
The following are the 3 key expectations you should have of any course:
Technical skills:
The course should impart the above-mentioned skills through a suitably designed curriculum.
Cloud platform:
You should get access to a cloud platform with the relevant software and experiment with it.
Case studies/Projects:
The course should have a simulation of real-life scenarios as explained above, where participants in the various categories can play out the roles as explained above.
Read our Popular Articles related to Software Development
Why Learn to Code? How Learn to Code?
How to Install Specific Version of NPM Package?
Types of Inheritance in C++ What Should You Know?
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Read More17 Nov'17
5.41K+
Big Data Applications That Surround You
The consumer market today is becoming more and more competitive and companies are struggling to offer something unique to their consumers. To be able to do that, companies need to understand the consumers better. The primary way to get meaningful consumer insights is to analyse the existing data collected from users. These insights can then be used not only to continue selling the products but provide customised events and service, which are available at a premium.
This trend is fairly common in new age industries such as e-commerce, even traditional, centuries-old industries greatly benefit from big data and analytics applications. For example, by installing sensors and subsequently analysing them, a railway operator can analyse their fixed and rolling assets. Big data analytics can identify when to carry out preventive maintenance on assets such as bridges and railway lines, increasing economic life and reducing downtime. Hence, data is not just benefitting new-age industries, but the traditional industries as well.
Here are some of the most commonly used big data applications around you, across industries:
Retail
Companies collect data of individual customers, the type of purchases they’re making and more importantly where they’re making the purchases. Based on this information, companies are able to segment customers according to their buying behavior. They then make predictions on what they will be buying in the future. This data is also used to cross-sell or upsell items, with the help of attractive offers on these new items.
Location
Another big use of data in analytics is to map areas or locations, as well known by everyone who uses Uber or Ola or Google Maps. Even food delivery apps and other apps that deliver goods to your doorsteps know where you live/work, etc. A huge amount of data gets captured every time you order and it includes all location characteristics in it. This information is also mined from a public policy perspective to look for traffic jams and also for taking decisions like setting up public transportation facilities such as metro stations.
Explore our Popular Software Engineering Courses
Master of Science in Computer Science from LJMU & IIITB
Caltech CTME Cybersecurity Certificate Program
Full Stack Development Bootcamp
PG Program in Blockchain
Executive PG Program in Full Stack Development
View All our Courses Below
Software Engineering Courses
Energy
The advent of big data has had a huge impact on the energy sector. Big data involves a large number of sensors and data collection methodologies which have allowed for the setting up of large systems for preventive maintenance. It enables better forecasting of demand. For example, ten years ago, there were no smart meters. Now, the power utility sector has very good information on how their consumers are consuming their power, the time, and the load that is consumed. This is actually helping them to make their investment decisions much faster. These industries are becoming more efficient both in terms of cost and in operation.
Telecom
Every operator is searching for new ways to increase profits during a time of stagnant and competitive growth in the industry. Here is where telecom companies are advancing rapidly in terms of being able to capture data and use it wisely for a variety of uses. Companies around the world are using big data to gain market share with targeted promotions, combating fraud, improving customer experiences and designing newer product offerings.
Explore Our Software Development Free Courses
Fundamentals of Cloud Computing
JavaScript Basics from the scratch
Data Structures and Algorithms
Blockchain Technology
React for Beginners
Core Java Basics
Java
Node.js for Beginners
Advanced JavaScript
Automotive
This sector is actually now trying to become more connected. Self-driving cars that we all already know about is one of the biggest buzzwords. Underneath it, to make this possible, there is a huge amount of technology that vehicles are collecting, gathering and using in conjunction to come up with these advancements. Increased government encouragement of electric vehicles requires location analytics to establish charging stations.
In-Demand Software Development Skills
JavaScript Courses
Core Java Courses
Data Structures Courses
Node.js Courses
SQL Courses
Full stack development Courses
NFT Courses
DevOps Courses
Big Data Courses
React.js Courses
Cyber Security Courses
Cloud Computing Courses
Database Design Courses
Python Courses
Cryptocurrency Courses
What lies ahead?
The only thing that is going to hold back the Big Data industry is the number of people who are skilled in it. The big data applications are actually limitless. There is a huge demand for skilled people at all levels from project managers to raw beginners. As a practitioner who’s been in this industry for some time, I can tell you that there is a huge demand. Companies are facing a talent problem at all levels and the solutions also have to come from different sources, such as increased access to education, training initiatives by companies, awareness spreading by the government.
The 11-month BITS Pilani and UpGrad program for working professionals is exactly the type of program that we need to help people who are ambitious, keen on furthering their careers and following their passions. I think a course like this is very useful because you have a large number of people who come from the industry and are excited to teach. Students will benefit a lot from learning hands-on and through practitioners directly. I am fairly certain that it will involve a lot of problem-solving and casework type methodology. So, I think people are going to have fun while they’re at it. I think that’s especially important when you are doing something on your weeknights and weekends.
Read our Popular Articles related to Software Development
Why Learn to Code? How Learn to Code?
How to Install Specific Version of NPM Package?
Types of Inheritance in C++ What Should You Know?
Views shared in this blog are the author’s personal views and they do not reflect the official stance of The Boston Consulting Group (BCG) or any of the author’s clients.
Conclusion
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Read Moreby Sanjay Sinha
22 Dec'175.81K+
How Big Data and Machine Learning are Uniting Against Cancer
Cancer is not one disease. It is many diseases. Let us understand the cause of cancer by a simple example. If you take a photocopy of a document, due to some issues, other dots or smears appear on it even though they are not present in the original copy. In the same way, in gene replication processes, errors occur inadvertently. Most of the time the genes with errors will not be able to sustain and will ultimately perish.
In some rare cases, the mutated gene with mistakes will survive and get further replicated uncontrollably. Uncontrollable replication of mutated genes is the primary cause of cancer. This mutation can happen in any of the twenty thousand genes in our body. Variation in any one or a combination of genes makes cancer a severe disease to conquer. To eradicate cancer, we need methods to destroy the rogue cells without harming the functional cells of the body; which makes it doubly hard to defeat.
Cancer and its complexity
Cancer is a disease with a long tail distribution. Long tail distribution means there are various reasons for this condition to occur and there is no single solution for eradicating it. There are diseases which affect a large percentage of the population but have a sole cause of occurrence. For example, let us consider Cholera. Eating food or drinking water contaminated by the bacterium Vibrio Cholerae is the cause of cholera. Cholera can occur only because of Vibrio Cholerae, and there is no another reason. Once we find out the only cause of a disease, then it is relatively easy to conquer it.
What if a condition occurs because of multiple reasons? A mutation can occur in any of the twenty thousand genes in our body. Not only that, but we also need to consider their combinations. Cancer may not just happen because of a random mutation in a gene but also because of a combination of gene mutations. The number of causes for cancer becomes exponential, and there is no single mechanism to cure it. For example, a mutation of any of these genes ALK, BRAF, DDR2, EGFR, ERBB2, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, and RIT1 can cause lung cancer. There are many ways for cancer to occur and that’s why it is a disease with long tail distribution.
In our arsenal for waging this war on cancer and conquering it, big data and machine learning are critical tools. How can big data help in fighting this war? What does machine learning have to do with cancer? How are they going to help in fighting a disease with many causes, a condition with a long tail distribution? Firstly, how and where is this big data generated? Let us find answers to these questions.
Gene Sequencing and explosion in data
Gene sequencing is one area which is producing humongous amounts of data. Exactly how much data? According to the Washington Post, the human data generated through gene sequencing (approximately 2.5 lakh sequences) takes up about a fourth of the size of YouTube’s yearly data production. If all this data were combined with all the extra information that comes with sequencing genomes and recorded on 4GB DVDs, it would be a stack about half a mile high.
Explore Our Software Development Free Courses
Fundamentals of Cloud Computing
JavaScript Basics from the scratch
Data Structures and Algorithms
Blockchain Technology
React for Beginners
Core Java Basics
Java
Node.js for Beginners
Advanced JavaScript
The methods for gene sequencing have improved over the years, and the cost for the same has plummeted exponentially. In the year 2008, the cost of gene sequencing was 10 million dollars. As of today, it is only a 1000 dollars. In the future, it is expected to reduce further. It is estimated that one billion people will have their genes sequenced by 2025. So, within the next decade, the genomics data generated will be somewhere between 2 – 40 exabytes in a year. An exabyte is ten followed by 17 zeros.
Before coming to how data will help in curing cancer, let us take one concrete example and see how data can help in conquering a disease. Data and its analysis helped in finding out the cause of one infectious disease and fight it, not now but in nineteenth-century itself! Yes, in the nineteenth century! The name of that disease is Cholera.
Clustering in the Nineteenth Century – the Cholera breakthrough
John Snow was an anesthesiologist and cholera broke out in September 1854 near Snow’s house. To know the reason for cholera, Snow decided to note the spatial dimensions of the patients on the city map. He marked the location of the home address of patients on London’s city map. With this exercise, John Snow understood that people suffering from cholera were clustered around some specific water wells. He firmly believed that a contaminated pump was responsible for the epidemic and against the will of the local authorities replaced the pump. This replacement drastically reduced the spread of cholera.
Snow subsequently published a map of the outbreak to support his theory, showing the locations of the 13 public wells in the area, and the 578 cholera deaths mapped by home address. This map ultimately led to the understanding that cholera was an infectious disease and quickly spread through the medium of water. John Snow’s experiment is the earliest example of applying the clustering algorithm to know the cause of illness and help eradicate it. In the nineteenth century, John Snow could apply clustering algorithm on a London city map with a pencil. With cancer as the target disease, this level of analysis is not possible with the same ease as John Snow’s Analysis. We need sophisticated tools and technologies to mine this data. That is where we leverage the capabilities of modern technologies like Machine Learning and Big Data.
Explore our Popular Software Engineering Courses
Master of Science in Computer Science from LJMU & IIITB
Caltech CTME Cybersecurity Certificate Program
Full Stack Development Bootcamp
PG Program in Blockchain
Executive PG Program in Full Stack Development
View All our Courses Below
Software Engineering Courses
Big data and Machine learning – tools to fight cancer
Vast amounts of data along with machine learning algorithms will help us in our fight with cancer in many ways. It can help us with diagnosis, treatment, and prognosis. Mainly, it will help customise the therapy according to the patient, which is not possible otherwise. It will also help deal with the long tail of the distribution.
Given the enormous amounts of Electronic Medical Records (EMR), data generated and recorded by various hospitals; it is possible to use ‘labelled’ data in diagnosing cancer. Techniques like Natural Language Programming (NLP) are utilised for making sense of doctor’s prescriptions and Deep Learning Neural Networks are deployed to analyse CT and MRI scans. The different types of machine learning algorithms search the EMR databases and find hidden patterns. These hidden patterns will help in diagnosing cancers.
A college student was able to design an Artificial Neural Network from the comfort of her home and developed a model that can diagnose breast cancer with a high degree of accuracy.
In-Demand Software Development Skills
JavaScript Courses
Core Java Courses
Data Structures Courses
Node.js Courses
SQL Courses
Full stack development Courses
NFT Courses
DevOps Courses
Big Data Courses
React.js Courses
Cyber Security Courses
Cloud Computing Courses
Database Design Courses
Python Courses
Cryptocurrency Courses
Diagnosis with Big Data and Machine Learning
Brittanny Wenger was 16 years old when her older cousin was diagnosed with breast cancer. This inspired her to make the process better by improving the diagnostics. Fine Needle Aspiration (FNA) was a less invasive method of biopsy and the quickest method of diagnosis. The doctors were reluctant to use FNA because the results are not reliable. Brittanny thought of using her programming skills to do something about it. She decided to improve the reliability of FNA which would enable the women to choose less invasive and comfortable diagnostic methods.
Brittanny found public domain data from the University of Wisconsin that included Fine Needle Aspiration. She coded an Artificial Neural Network (ANN) which is inspired by the design of human brain architecture. She used cloud technologies to process the data and train the ANN to find the similarities. After many attempts and errors finally, her network was able to detect breast cancer from an FNA test data with 99.1% sensitivity to malignancy. This method is applicable for diagnosing other cancers as well.
The accuracy of diagnosis is dependent upon the amount and quality of the data available. The more the data available, the more the algorithms will be able to query the database, find similarities and come out with valuable models.
Treatment with Big Data and Machine Learning
Big data and Machine learning will be helpful not only for diagnosis but treatment as well. John and Kathy were married for three decades. At the age of 49, Kathy was diagnosed with stage III breast cancer. John, CIO of a Boston hospital helped plan her treatment with the help of big data tools that he designed and brought into existence.
In 2008, five Harvard affiliated hospitals shared their databases and created a powerful search tool known as ‘Shared Health Research Information Network’ (SHRINE). By the time of Kathy’s diagnosis, her doctors could sift through a database of 6.1 million records to find insightful information. Doctors queried ‘SHRINE’ with questions like “50-year-old Asian women, diagnosed with stage III breast cancer and their treatments”. Armed with this information doctors were able to treat her with chemotherapy drugs by targeting the estrogen-sensitive tumour cells by avoiding surgery.
By the time Kathy completed her chemotherapy regimen the radiologists could no longer find any tumour cells. This is one example of how big data tools can help in customising the treatment plan according to the requirement of each.
As cancer is a long tail distribution a ‘one size fits all’ philosophy will not work. For customising treatments depending on the patient’s history, their gene sequence, results of diagnostic tests, a mutation found in their genes or a combination of their genes and environment, big data and machine learning tools are indispensable.
upGrad’s Exclusive Software Development Webinar for you –
SAAS Business – What is So Different?
document.createElement('video');
https://cdn.upgrad.com/blog/mausmi-ambastha.mp4
Drug Discovery with Big Data and Machine Learning
Big data and Machine learning will not only help in diagnosis and treatment but also will revolutionise drug discovery. Researchers can use open data and computational resources to discover new uses for the drugs which are already approved by agencies like FDA for other purposes. For example, scientists at University of California at San Francisco found by number crunching that a drug called ‘pyrvinium pamoate’ which is used to treat pinworms – could shrink hepatocellular carcinoma, a type of liver cancer, in mice. This disease which is associated with the liver is the second highest contributor to cancer deaths in the world.
Not only is big data used for discovering new uses for old drugs but can also be used for detecting new drugs. By crunching data related to different drugs, chemicals, and their properties, symptoms of various diseases, the chemical composition of the drugs used for those conditions and side effects of these medications collected from different media; new drugs can be devised for various types of cancer. This will significantly reduce the time taken to come up with new medicines without wasting millions of dollars in the process.
Using big data and machine learning will no doubt improve the process of diagnosis, treatment and drug discovery in treating cancer, but it is not without challenges. There are many stumbling blocks and problems on the road ahead. If these blocks are not removed, and these challenges are not faced, then our enemy will get the upper hand and will defeat us in the future battle.
Read our Popular Articles related to Software Development
Why Learn to Code? How Learn to Code?
How to Install Specific Version of NPM Package?
Types of Inheritance in C++ What Should You Know?
Challenges in using Big Data and Machine Learning to fight Cancer
Digitisation
Except for a few large and technically advanced hospitals, most of them are yet to be digitised. They are still following the old methods of capturing and recording data in massive stacks of files. Due to lack of technical expertise, affordability, economies of scale and various other reasons, digitisation has not taken place. Provision of open source EMR software, teaching how helpful these digital records could be in treating the patients and how profitable it is to the hospitals are some steps in the right direction.
Data locked in enterprise warehouses
As of today, only a few hospitals can digitally capture patient records. This apparatus too is locked away in enterprise warehouses and inaccessible to the world at large.
Hospitals are reluctant to share their databases with other hospitals. Even if they are willing, they are plagued by the different database schemas and architectures. Critical thinking is required on this front about how hospitals can share their databases among themselves for their mutual benefit without being suspicious of each other. A consensus needs to be reached about the schema in which this data should be shared as well, for the benefit of all hospitals. This patient data should be democratised and utilised for the betterment of the future of mankind.
Patient data should not be allowed to be employed for the growth of a single organisation. Utmost care should be taken to anonymise the individual to whom the data belongs. If a person’s lipstick preference is leaked, then there is not much harm. If a person’s medical history is leaked, then it will have a significant impact on his life and prospects.
The government should take positive steps in this direction and should help create a big data infrastructure for storing medical records of patients from all hospitals. It should make it compulsory for all hospitals to share their database within this shared infrastructure. Access to this database should be made free for patient treatment and research.
Improvement in efficiency of Machine Learning Algorithms
Machine learning is not a magic pill for cancer diagnosis and treatments. It is a tool that if used well can help in our journey to conquer cancer. Machine learning is still in a nascent stage and has its disadvantages. For example, the data on which these algorithms are trained needs to be very close to the data on which they are utilised for producing results. If there is a huge difference in them, then the algorithm will not be able to provide meaningful results which can be employed.
There are many machine learning algorithms which exist with their own peculiar assumptions, advantages, and disadvantages. If we can find a way to combine all these different algorithms for achieving the results required by us, i.e. curing cancer, needless to say, we would have found a hugely beneficial outcome. The famous machine learning scientist Pedro Domingos calls it “The Master Algorithm”, who also wrote a popular science book of the same name.
According to Pedro, there are five different schools of thought in machine learning. The symbolist, connectionist, Bayesian, evolutionaries and analogisers. It is difficult to go into all these different types of machine learning systems in this article. I will cover all the five types of machine learning systems in one of my future blogs. For now, we need to understand that all these different methods have advantages and disadvantages of their own. If we can combine them, then we can derive highly impactful insights from our data. This will be immensely useful not only for all kinds of predictions and forecasts but also for our fight against a vengeful enemy – cancer.
To summarise, cancer is a formidable enemy which keeps changing its form frequently. We do possess new weapons in our arsenal now in the form of big data and machine learning, however, to face it competently. But to demolish it entirely we need a more powerful weapon than what we presently possess. The name of that weapon is ‘The Master Algorithm’.
We also need to make some changes in the strategies and methods with which we are fighting this enemy. These changes are creating a big data infrastructure, making it compulsory for hospitals to share anonymised patient records, maintaining the security of the database and allowing free access to the database for patient treatment and research to cure cancer.
Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Wrapping up
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Learn Software Engineering degrees online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Read More08 Jan'18
6.08K+
Piyush Kumar of MakeMyTrip explains Big Data Operations
Piyush Kumar is the Head of Data Platform Engineering at MakeMyTrip. He heads the Data team (Data platform, Data Science, and Business Intelligence functions) at MakeMyTrip to support various Lines of Business such as Flights, Hotels, Holidays, and Ground. Along with defining Big Data strategy, he looks after designing and building a scalable and distributed machine learning platform for Big Data systems with real-time streaming and batch processing for Clickstream, Mobile, Transactional, CRM (Customer relationship management) & user feedback or reviews data.
In an exclusive interview, Piyush provides valuable insights to UpGrad about how MakeMyTrip has leveraged Big Data, in line with current trends, to upgrade and enhance its product offerings.
In this first video, Piyush talks about how MakeMyTrip uses Big Data to solve critical business problems in the area of customer segmentation, personalisation, building data pipelines, etc. He also explains the architecture of the Big Data system at MakeMyTrip.
In the second video, Piyush shares insights on career planning for Big Data enthusiasts highlighting different career paths available in Big Data and the necessary skill sets required.
So, Piyush spoke about how MakeMyTrip uses Big Data in their operations. He provided valuable insights to UpGrad about how MakeMyTrip is leveraging Big Data, in line with current trends, to upgrade and enhance its product offerings. He shared insights on career planning for big data enthusiasts highlighting the necessary skill sets required.
Explore Our Software Development Free Courses
Fundamentals of Cloud Computing
JavaScript Basics from the scratch
Data Structures and Algorithms
Blockchain Technology
React for Beginners
Core Java Basics
Java
Node.js for Beginners
Advanced JavaScript
Are you planning a big data career? If you want us to cover other topics and interview other industry experts please let us know your thoughts in the comments section.
Explore our Popular Software Engineering Courses
Master of Science in Computer Science from LJMU & IIITB
Caltech CTME Cybersecurity Certificate Program
Full Stack Development Bootcamp
PG Program in Blockchain
Executive PG Program in Full Stack Development
View All our Courses Below
Software Engineering Courses
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
In-Demand Software Development Skills
JavaScript Courses
Core Java Courses
Data Structures Courses
Node.js Courses
SQL Courses
Full stack development Courses
NFT Courses
DevOps Courses
Big Data Courses
React.js Courses
Cyber Security Courses
Cloud Computing Courses
Database Design Courses
Python Courses
Cryptocurrency Courses
Learn Software Engineering degrees online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Read our Popular Articles related to Software Development
Why Learn to Code? How Learn to Code?
How to Install Specific Version of NPM Package?
Types of Inheritance in C++ What Should You Know?
Read Moreby Mohit Soni
17 Jan'185.25K+
The Business of Data Security is Booming!
This is an excerpt from the book ‘Breach: Remarkable Stories of Espionage and Data Theft and the Fight to Keep Secrets Safe’ by Nirmal John. Nirmal John has worked in advertising and journalism. He was earlier the assistant editor of Fortune.
This book brings to light several incidents which till now were brushed under the carpet. It has instances of piracy, data theft, phishing, among many others. Even though he focuses on India, Nirmal John takes great pains to show links between underground international networks working to undermine data security. This excerpt has been taken from the chapter, ‘WHITE HAT Is GrEEnBACK’. This excerpt throws light on the normal routine of Saket Modi, a young CEO of a data security company, Lucideus.
Fear. Urgency. Desperation. Panic. The themes that dominate that call for help are almost always the same. Pretty much everyone working in the cybersecurity business knows what it is to get that call, especially in the middle of the night. There used to be a time when break-ins were reported first to the police. But with the crime itself changing in nature, the way it is reported is changing too. The cops aren’t in control when it comes to new-age crime and theft of data. Dialling 100 may not get you far when it comes to data breaches.
Saket Modi has been receiving these calls for a few years now. Modi is a baby-faced young man in his twenties who boasts an easy charm. His company is named Lucideus. It is a mash-up of two names from the ancient scriptures— Lucifer, the Latin word which came to be used to describe the devil, and Zeus, the supreme Greek deity who, among other things, dispensed justice.
The mash-up is meant to be a reference to how the ‘bad’ and the ‘good’ come together online. Modi’s earlier office in Safdarjung Development Area market near IIT in Delhi was small and tastefully appointed in white (perhaps to accentuate the idea of the white hat hacker). He has since moved to a new, much larger space in Okhla, still tastefully appointed, still in white.
He started out when he was in his teens, helping companies investigate breaches and shore up their cybersecurity. His carefully constructed reputation as a young white hat hacker brought him many projects over the years. These days he is among those advising the Government of India on matters of cybersecurity.
Most of his projects for companies started with a call from a panic-laden voice. Modi particularly remembers one call from nearly five years back. It was the chief executive of one of India’s largest services companies at the other end of the line. The CEO introduced himself. He had met Modi on the sidelines of a conference; they’d exchanged visiting cards, and the chief executive had fished out Modi’s card to call him.
‘We think we are in major trouble. How quickly can you fly to Bengaluru?’
Modi was used to such requests from panic-stricken executives. He asked for a bit more context on what exactly had gone wrong.
‘The CEO of one of my top five clients, who is a huge name internationally, called me earlier today. He asked me to immediately stop all the operations I was doing for his company. He didn’t explain why. He just said that he will be calling me later to explain further.’
This was a client that contributed a very significant chunk to the Indian company’s top line. There were hundreds of employees from the Indian company working on the client’s projects.
‘I suspect there has been a breach, because of which all this could be happening. There are a few other things that would explain this reaction from the client. The truth is, I can’t afford to lose this client under any circumstances,’ the executive confessed.
Explore Our Software Development Free Courses
Fundamentals of Cloud Computing
JavaScript Basics from the scratch
Data Structures and Algorithms
Blockchain Technology
React for Beginners
Core Java Basics
Java
Node.js for Beginners
Advanced JavaScript
Saket Modi took the next flight to Bengaluru.
It was when he reached the office of the chief executive that Modi realized he wasn’t the only one who had got a call from him. There, sitting in the conference room and waiting to be briefed, were cyber-forensics experts from big accounting firms and other security researchers like himself.
”
upGrad’s Exclusive Software Development Webinar for you –
SAAS Business – What is So Different?
document.createElement('video');
https://cdn.upgrad.com/blog/mausmi-ambastha.mp4
”
Even though this was par for the course when it came to how Indian companies reacted in such situations, Modi says he was taken aback. He says this has become a common practice when it comes to investigating breaches—the targeted company invites the names known to have cyber- forensics experience for a briefing post an incident and then gives the job to whoever bids the lowest. The question he asks is whether matters of security can be treated like other supplier relationships, especially in a crisis situation?
This is probably how things work in many Indian corporations but, as he points out with evident displeasure, that is not how security and breach protocol should roll, particularly in a crisis situation. ‘security is not an L1 business.’
The chief executive briefed the gathering about the situation. There had indeed been a breach. He was looking for partners who could immediately deploy resources to find the vulnerabilities that had led to the breach and could help plug them. That was the only way he could convince the client not to terminate the contract.
Modi ended up with the project even though his quoted fee was high. He flew in his team from New Delhi and, during the investigation, found several vulnerabilities in the organization that had resulted in the breach.
In-Demand Software Development Skills
JavaScript Courses
Core Java Courses
Data Structures Courses
Node.js Courses
SQL Courses
Full stack development Courses
NFT Courses
DevOps Courses
Big Data Courses
React.js Courses
Cyber Security Courses
Cloud Computing Courses
Database Design Courses
Python Courses
Cryptocurrency Courses
The team started by pouring over the access logs which list the requests for individual files from a website. They then isolated the sectors which were compromised and sandboxed them. That meant that they used a separate machine, not connected to the company’s main network, to run programmes and test the behaviour of the malicious code.
The idea behind doing this was to deduce if there were patterns in the type of data that was being compromised. If they could unearth a pattern, it could theoretically lead them to the hacker.
Unfortunately, as in many such instances, Modi says, he couldn’t identify the source of the breach as its origins were from beyond Indian borders and hidden in a complex trail of IPs. His team couldn’t definitively pinpoint the location, but they pushed the chief executive and his company to shore up every single facet of its security protocol.
Explore our Popular Software Engineering Courses
Master of Science in Computer Science from LJMU & IIITB
Caltech CTME Cybersecurity Certificate Program
Full Stack Development Bootcamp
PG Program in Blockchain
Executive PG Program in Full Stack Development
View All our Courses Below
Software Engineering Courses
The client continued the shutdown of the handling of his operations by the Indian company for a month, while Modi and his team worked on overhauling the Indian company’s security system. A month later, Modi had a call with the CEO of the company’s international client to detail the steps they had taken to make sure that breaches such as the one that had happened would not recur. Later, the client sent a team to audit the changes, and only when it was satisfied did the client allow the company to resume work on its projects. It cost the Indian company thousands of billable hours, not to mention damage to their standing in front of the client.
If you like this excerpt and want to read real-life thriller stories full of hackers, police, and corporates, you can read the book; ‘Breach’ by Nirmal John.
Read our Popular Articles related to Software Development
Why Learn to Code? How Learn to Code?
How to Install Specific Version of NPM Package?
Types of Inheritance in C++ What Should You Know?
Conclusion
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Learn Software Engineering degrees online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Read Moreby upGrad
01 Feb'185.6K+
Big Data: What is it and Why does it Matter?
If you’re a complete newbie in the world of Big Data, the term itself might be slightly confusing. Before we move to the technicalities, let’s ask two essential questions:
How big?
What data?
The answer to the first question isn’t fixed – it would’ve changed by the time you’d have completed reading this line. For all we know, by the time you’ve read through the article, the total amount of data in the world would have soared by quite a bit. According to IBM, we create roughly 2.5 quintillion bytes of data per day – To put things in perspective, that is the capacity you’ll need to hold around 530,000,000 MP3 songs. Look at that number again, there are quite a lot of zeros in there.
Now, let’s talk about the “what”. What data is this?
It’s almost like the famous song by The Police, which goes something like…
“Every breath you take, every move you make, every bond you break, every step you take, I’ll be watching you.”
And that’s what they’re doing. By they, we simply mean the ones who’re in charge of collecting this data. Everything you do on the internet is adding to this colossal mountain of data. Your Facebook posts, Tweets, Snapchat stories, and whatever the kids are using these days – are just bricks in the huge wall of Big Data.
Watch Youtube video.
So, to answer your second question – the data in question is the very data you’re producing every passing moment. Every time you book a cab, or order food online, or even do a very basic google search – It’s all going on top of the heap. Everything is being collected. That’s what is making this big data, bigger – every passing minute.
Now that you’re in control of the situation, let’s dive a little deeper into the ocean of Big Data. Further, we’ll look at why exactly does Big Data matter so much, and who’re the ones benefiting from it?
Explore our Popular Software Engineering Courses
Master of Science in Computer Science from LJMU & IIITB
Caltech CTME Cybersecurity Certificate Program
Full Stack Development Bootcamp
PG Program in Blockchain
Executive PG Program in Full Stack Development
View All our Courses Below
Software Engineering Courses
What is Big Data?
By now, we’re clear that Big Data is just an extremely large volume of data – both structured and unstructured – collected through a variety of sources and in a variety of formats. For the sake of a formal definition, you can have a look at how IBM defines “Big Data”:
According to the data scientists at IBM, Big Data can typically be characterized by 4 V’s – Volume, Variety, Velocity, and Veracity.
Volume
Very simply, volume means how “big” the Big Data is. Like we said earlier, there’s no specific number to it, it’s ever-increasing.
Variety
The data we’re talking about comes from a number of sources, hence it is in numerous formats. We’re talking about data in the form of audio, video, pdf, email, and more! Most of this data is unstructured – implying not much sense can be made out of it without a proper study.
Explore Our Software Development Free Courses
Fundamentals of Cloud Computing
JavaScript Basics from the scratch
Data Structures and Algorithms
Blockchain Technology
React for Beginners
Core Java Basics
Java
Node.js for Beginners
Advanced JavaScript
Velocity
The flow of Big Data from the variety of sources we discussed above is massive and un-ending. Like we said, by the time you’ve read this article, the amount of Big Data in the world would have increased drastically. If you don’t believe us, listen to the guys at IBM who claim that by 2020, there’ll be 5,200 GB of data for each and every person on Earth. Yeah, talk about velocity!
Veracity
Veracity in context of Big Data simply refers to the noises and anomalies present in the data. When dealing with Big Data, veracity is one of the biggest challenges that data analysts face.
By now, it’s clear that there’s a lot of data around us, almost too much to even think about! Making sense of this data is quite a daunting task in itself. For this, we have data analysts – the heart and soul of any organization’s analytics team – but how exactly do businesses use data to power their operations? Let’s see.
In-Demand Software Development Skills
JavaScript Courses
Core Java Courses
Data Structures Courses
Node.js Courses
SQL Courses
Full stack development Courses
NFT Courses
DevOps Courses
Big Data Courses
React.js Courses
Cyber Security Courses
Cloud Computing Courses
Database Design Courses
Python Courses
Cryptocurrency Courses
Big Data matters – but why?
The organizations which earlier had to rely on the data collected through archaic spreadsheets now have access to tonnes of data on their customers. Data that can be used to overhaul their business and make profits like never before.
Watch Youtube video.
Sherlock Holmes puts it right –
“It’s a capital mistake to theorize before one has data!”
And today, businesses HAVE data – a lot of it. But how exactly does it help them?
By carefully examining the data at hand, organizations are performing the following kinds of intricate analytics to gather actionable insights and perform better in the market:
Social listening
It gives the organizations the power to know the real-time feedback of their consumers. The days of polls or surveys are long gone – sentiment analysis provides much more comprehensive and actionable feedback. Tools like HootSuite, TweetReach, Klout, and BuzzSumo are just a few examples of social listening tools that help the organizations stay a step ahead by knowing what the consumers have to say, their sentiments, and feedback.
Comparative analysis
Thanks to Big Data, organizations can now compare their products, services, and overall brand image with their competitors by examining user-behavior metrics in real-time.
Marketing analytics
This helps organizations in promoting new products and services to the target audience in a much more informed and innovative way. There are various sophisticated tools dedicated to Marketing Analytics which help organizations keep a close eye on how their product is being received in the market. Some common tools for this include – Marketing Evolution, Predictive Modeling, Lattice Engines – all of which aim to improve the organization’s ROI by leveraging Big Data.
Targeting
Using this stream of Big Data analytics, organizations can dive into social media activity on any subject, based on a variety of sources, all in real-time. For example, let’s say you want to target specific customer groups and provide them with exclusive special offers – you can do that now, using Big Data. It’s a win-win situation for both the organization as well as the customers. The same tools as the ones discussed in Social Listening can be used for this purpose as well.
Customer satisfaction
Organizations can boost customer engagement manifold by analyzing Big Data from a multitude of sources. Also, using these metrics, they’re able to figure out, and eventually iron out any potential customer issues that might go viral – preserving brand loyalty and improving customer service, at the same time.
Who’s using Big Data – Real-world applications
It’s safe to say that no domain of business today is untouched by the magic that is Big Data. From banking, to healthcare, to social-media, to education, to even government sectors – the list can go on – everyone is trying their best to make sense of the data at hand and outperform their competition.
Let’s see some major industries that are affected by the giant that is Big Data:
Healthcare Providers
Asia’s largest healthcare group – Apollo hospitals – is using Big Data and analytics to control HAI (hospital-acquired infections).
Education
Big data is used quite extensively to improve higher education. Take the example of the University of Tasmania. It has deployed a management system that tracks things like the time at which a student logs on to the system, time spent on different pages of the system, and even the overall progress of the student.
Government Operations
Big Data has a wide range of applications in government operations and services. They include energy exploration, fraud detection, environmental protection, financial analysis, and health-related research.
We can go on and on about each and every industry, but we think you get the gist. Big Data analytics is being used wherever it is possible. And frankly, there’s no domain that can’t use a little data analytics to improve their operations. Because at the end of the day, data is all that’s there, and all there will ever be.
To wrap things up…
It’s safe to say that Big Data is not just a fad – it’s a revolution. It’s always better to stay on your toes when you’re in the middle of a revolution, or you’ll be left behind before you know it. What makes one particular organization stand out from the rest is the way they deal with their data. Having said that, it’s only fair to conclude by saying that the demand for good data scientists is, and will keep on, increasing.
So, buckle up while you can, and get started with exploring the mad but genius world of Big Data!
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Learn Software Engineering degrees online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Read our Popular Articles related to Software Development
Why Learn to Code? How Learn to Code?
How to Install Specific Version of NPM Package?
Types of Inheritance in C++ What Should You Know?
Read Moreby Mohit Soni
05 Feb'18