Programs

A Comprehensive Guide for Big Data Testing: Challenges, Tools, Applications

Introduction

Previously, all data was preserved in a tabular format, also known as structured data. Now, the data is increasing exponentially as every individual wants to stay connected and share things they care about.

Now, the internet has more unstructured data than structured data. It will increase in scale in this new decade because of IoT, self-driving cars, artificial intelligence, online banking, online shopping, etc. Currently, only about 20% of data is structured, and 80% of data is unstructured.

Data is generated by almost every action performed on the internet. For example, when a user checks out their social media feed, data is generated. Liking a post, performing a Google search, sending a message, taking a cab—all of these involve data generation. All modern businesses use the power of data to scale and grow and become more customer-centric.

To get insights or information from the data, we need to design a system. Here, we will talk about Big Data testing, some of the challenges faced by organizations, ways to improve Big Data testing, some strategies for testing, ways to automate your testing process and tools, and the tech stacks to perform Big Data software testing.

Testing with Big Data has to be included in an organization’s development cycle. As the businesses are going global, there are many customers, and their data gets generated, which needs proper control; otherwise, it becomes useless. With social media’s help, all the local to global businesses are trying their best to acquire customers.

All successful teams that have introduced Big Data have taken specific steps to get the world’s best products and systems as in this instant world; everything has to be served quickly. If it takes more time, then you are out of the business.

For making a perfect product that is market-ready, Big Data testing is essential, just like QA testing for software development. You can, too, start with QA testing for Big Data by following up on this article.

Big Data Testing

Traditional QA testing doesn’t align with Big Data. Testing with Big Data is a unique process. For creating a well-performing system, the Big Data QA testing method is used, which is also known as ‘Big Data testing’. All the new software like Hadoop, Cassandra, etc., are required to derive insights from vast amounts of data and use them for testing purposes.

Some types and techniques to start testing with Big Data are described below.

  • Functional: Front-end application testing helps with data validation. It helps to determine the actual difference between the expected output and the actual output. Front-end testing always helps with knowing the tech stack in and out and finding bugs.
  • Performance: Automation is key in Big Data as an increase in data will lead to a lot of work if not automated. This testing involves checking all the features under various conditions and creating proper products or systems for large-scale use. Performance testing is one of the key elements as it helps to identify bugs and obtain all the relevant information from a set of Big Data.
  • Data Ingestion: The data ingestion technique is used to extract the Big Data’s relevant data and verify whether the data extracted is correct and useful.
  • Data Processing: Here, the data automation tools help determine if all the data generated from the data ingestion technique is aligned with the business model. The data must be informative for the business.
  • Data Storage: Now, it’s important to ensure the information derived from the Big Data is appropriately stored in a data warehouse. It is verified by getting the output from the data warehouses. Comparisons are made between data stored in the warehouse and the system’s data to generate the required output.
  • Data Migration: The word ‘migration’ refers to the data which is migrated or moved to a new server. In some situations, if the tech stack is changed in the near future, then we need to use this Big Data QA testing method known as ‘data migration testing’. It helps assess how the data is retained and adapt to the new system with no loss and less downtime.

Challenges Faced in Big Data Testing

There are numerous challenges with Big Data testing, some of which are listed below, as most of the data is unstructured. It can lead to more heterogeneous data. However, following a proper technique can mitigate many hurdles and help businesses grow. Learn more about the challenges of big data.

  • Incomplete and Heterogeneous Data: The data is not proper as most of it is unstructured. Also, due to various sets of users’ data being available, the data tends to be incomplete. It creates a considerable challenge in analyzing the data and developing new approaches to deal with it. Incomplete and heterogeneous data can lead to difficulties in getting the required information out of the data.
  • High Scalability: All the data gathered are from various sources, so scalability is always an essential factor in Big Data testing.
  • Test Data Management: All the data generated after the test has to be tested and stored well in the system to make it useful. If the test data is not managed correctly, it will lead to data loss and the loss of useful information derived from the data, which is essential for businesses.

Tools Used for Big Data Testing

There are various tools available for Big Data QA testers. Some of the best tools are listed here to help develop business operations informed by Big Data.

Hadoop

Hadoop is a favourite of all, especially data scientists. Hadoop handles multiple tasks with great processing power and precision. It can store massive amounts of data along with various data-types.

Cassandra

Big tech firms use Cassandra for QA testing with Big Data. It is free and open-source software. It can handle various Big Data operations like automation and linear data handling and is a very reliable system.

Storm

A storm is a cross-platform tool used to handle various operations by integrating different third-party software, making it easier to work. A storm is a real-time software used for Big Data testing.

HPCC

HPCC is a High-Performance Computing Cluster, and it is a free tool. It features a scalable platform for supercomputing and supports all three parallelisms (i.e., system parallelism, pipeline parallelism and data parallelism). It requires an understanding of C++ and ECL.

Cloudera

Cloudera is an ideal testing tool for enterprise-level deployments.

Learn more about big data tools. 

Major Uses of Big Data Testing

Testing with Big Data has considerable benefits in terms of increasing the revenue of businesses. It helps automate processes and focus on the core areas of the business. Some of the advantages of Big Data testing are listed below.

  1. Data accuracy increases. The data injection technique helps get the proper data in the system as an input and process it to get useful outputs for the business.
  2. All unstructured data requires more amount of storage which eventually increases costs. But when the data is well-tested, the storage cost reduces significantly as only relevant information is used as an input for the other processes.
  3. As the data gives relevant information, the business performance is enhanced, and operations become more effective. All the processes are interlinked, and this helps to get more value.
  4. Big Data QA testing helps to get the right data at the required time. Even if the data generated is correct with routine QA testing, timing plays a pivotal role. If the data is not available at the right time, the entire process becomes meaningless. But Big Data QA testing helps to mitigate this and generate valid data.
  5. Big Data QA testing helps to reduce data flaws and increase profits.

Upscaling with Big Data Testing

Knowledge is power when it comes to Big Data QA testing. Proper upscaling with Big Data testing is only possible when an organization has a talented and knowledgeable team. The team can be in-house or can be hired using outsourcing. The right knowledge and right tools can help all businesses using Big Data QA testing to scale and grow.

To get global or scale the business, it is essential to start employing people specializing in Big Data and Big Data testing.

The world of social media is going to stay, and the business will become more customer-centric. So, it is the need of an hour to have people with the right skill-sets in the market. Learning about Big Data and testing with Big Data is an excellent way to upscale your career or look for a career change.

Conclusion

Thus, all the processes are interconnected and can produce a great outcome if performed together in a link. It requires time to learn initially, but in the long run, it reduces the significant time plus increases the team’s efficiency, and helps all the businesses grow and provide real value.

The domain of Big Data is relatively new as more data has been generated in the last 4-5 years, so there are many challenges and opportunities to grow and make a significant impact with your contribution. Check out this Big Data course to learn about Big Data testing and be market-ready with your skills and projects.

Upskill Yourself & Get Ready for The Future

400+ HOURS OF LEARNING. 14 LANGUAGES & TOOLS. IIIT-B ALUMNI STATUS.
APPLY NOW

Leave a comment

Your email address will not be published.

Accelerate Your Career with upGrad

Our Popular Big Data Course

×