What is Predictive Analysis? Why is it Important?

By Aaron Edgell

Updated on Aug 13, 2025 | 8 min read | 6.21K+ views

Share:

Ever wonder how Netflix knows exactly what movie you'll want to watch next, or how your credit card company can flag a fraudulent transaction almost instantly? The answer lies in the power of predictive analytics. 

 This exciting field of data science uses historical data and machine learning to make highly accurate forecasts about the future. While other forms of analytics tell you what happened (descriptive) or why (diagnostic), predictive analytics focuses on what is most likely to happen next. 

 In this guide, we'll explore the different types of predictive analysis, from classification to regression models and explore its applications in different industries. 

Unlock the power of analytics by enrolling in our Data Science Courses today and start transforming raw data into actionable insights! 

What is Predictive Analytics?

Predictive analytics is a branch of data analytics that predicts future outcomes of events based on past data and information. The results are calculated by using a broad spectrum of modern-day technologies that include various mathematical processes, statistical modeling, machine learning, data mining, big data, and a lot more.

Using predictive analytics, highly accurate predictions are made through multiple cycles of trial and error. The technique is used by businesses to get deep insight into future events to improve decision-making and facilitate maximized sales. 

Gaining detailed knowledge of predictive analytics is only possible with a solid descriptive, diagnostic, and prescriptive research background.

Understanding the Working of Predictive Analytics 

Predictive analytics works on the blueprint of leveraging historical data for uncovering real-time insights. It relies on the repetition of several steps in a cyclic order to increase the accuracy and viability of every predictive model.

Here are the steps involved in predictive analytics:

  1. Understanding a business 
  2. Analyzing business data 
  3. Preparing data for model 
  4. Preparing the model 
  5. Evaluation 
  6. Working on the flaws and repeating the entire cycle for accuracy 
  7. Deploying the final product

1. Understanding a Business

Understanding the demand before providing a solution for its supply is essential. Therefore, the first step involves gathering relative knowledge and information to chalk out a course of action. Next, you need to collect sufficient data for proper training of the predictive model and identification of predictive patterns.

2. Data Analysis and Preparation

You must analyze the data required to train the model. This means eliminating all unwanted information or noise and ensuring sufficient information for the flawless functioning of the model. 

3. Preparing the Model

This is the most crucial step. Here, you need to prepare the product according to the results of your research. The modeling is carried out using predictive analytic techniques like machine learning, big data, data mining, statistical analysis, etc. At the end of the training, the model will learn from the historical data and identify trends accordingly. 

4. Evaluation of the Model

By working with business analysts and executing trial runs, you can understand whether the model makes sense and delivers according to the needs of the business. This step is a must because complicated algorithms can lead to false predictions, negatively affecting the business. 

5. Checking Accuracy

You can evaluate the accuracy by retraining the model with data sets. This is a continuous process that will progressively increase the model’s efficiency based on the feedback received. 

6. Deployment

After a while, when the model reaches a specific efficiency level, it can be deployed for practical use in real-world situations to solve real-time problems.

Predictive Analytics: Prototype Models

Predictive analytics models form the base of data analytics. In addition, template and prototype models make it easier for users to convert current and past data into mathematically proven predictions that provide future insights. The different types of models used in predictive analytics include:

  • Predictive Maintenance Model: it predicts the chances of business equipment reaching its breaking points.
  • Quality Assurance Model: This model is skilled at predicting and preventing possible defects in a product, thus maintaining quality and providing customer satisfaction. 
  • Customer Lifetime Value Model: It shortlists the customers who are most likely to reinvest in the services and products offered by a company. 
  • Customer Segmentation Model: This model aims to segregate customers into segments based on similar purchasing characteristics and behavior. 

Techniques of Predictive Analytics

  • Decision trees: In simplest terms, this model places data in different segments known as ‘branches’, based on other variable parameters. Decision trees can be handled effortlessly and readily understood as data is extracted as per user requirements in a short period. 
  • Regression: This statistical system facilitates the determination of patterns in data sets and establishes formula-based relationships between the variables. 
  • Neural Networks: Developed by imitating the working of the human neural system, this model uses Artificial Intelligence to recognize patterns. It is highly effective when you have too much data to handle but cannot formulate a relationship between the inputs and outputs. 

Difference between Forecasting Data and Prediction of Data

Prediction and forecasting of data may sound similar, but there is a minute difference between the two. Data forecasting can be projected as a subset of predictive modeling. Prediction is more inclusive of statistical theories, whereas forecasting considers probabilities and time series analysis. To explain in a sentence, we can say that: “all predictions are not forecasts, but all forecasts are predictions.”

Predictive Analytics and Machine Learning

You might be wondering if machine learning and predictive analytics follow the same procedure to develop near-human precision models. Although the original idea behind these technologies is similar, a significant difference exists between them.

Machine learning is aimed at the complete independent working of a system and the elimination of any reliance on human interaction. It seeks to establish an autonomously operating ecosystem without the need for human intervention. 

However, predictive analytics is designed to be operated and modified with human experts in the loop, according to the needs of a company. Without human input, predictive analytics is a stagnant technology and cannot prosper. 

Predictive Analytics and Big Data

Big data has played a revolutionizing role in providing a structure and shape to predictive analytics. Analyzing gigantic volumes of data to leverage strategic decisions wouldn’t have been possible without the introduction of big data.

Applications of Predictive Analytics 

Predictive analytics has made its way into various industries across multiple disciplines. From marketing and insurance companies to restaurant chains, every sector has accepted this emerging technology with open hands. 

Some sectors where predictive analytics has facilities major development are: 

  • Investment: Investors leverage this method to predict the upcoming market movements to enhance their portfolios and save themselves from potential losses. 
  • Banking and Finance: Financial bodies like banks use predictive analytics to ensure client satisfaction and security. Banking-specific models are used for the identification of cross-selling opportunities and the detection of frauds. 
  • Energy and Utilities: Predictive analytics plays an essential role in the energy sector. Complex models are used for predicting the impact of weather change patterns. This helps in undertaking preventive measures to minimize catastrophic losses related to electrical energy through power grid damages. 
  • Manufacturing Industry: Production of any unit can be increased or decreased based on the results of product-specific working models. These models are created as a combination of both predictive analytics and business analytics techniques. 
  • Healthcare: Healthcare organizations have shown zealous enthusiasm to adopt predictive analytics to improve their operations over the last couple of years. According to surveys, healthcare organizations that leverage predictive analytics are likely to save (at least) a whopping 15% of the total budget over the next five years, if not more. In addition, 93% of healthcare executives agreed unanimously that predictive analytics would play a crucial role in shaping their future. The fields in which healthcare organizations implement predictive analytics are: 
  • Optimizing staff schedules
  • Supply acquisition and management
  • Allocating resources during saturated periods

Conclusion

Predictive analytics is an emerging field that is creating widespread demand for itself. In fact, data analytics as a whole will be shaping industries in the future. Not only is it revolutionizing businesses and companies, but it has also played an integral role in generating mass employment. 

With the potential of an exponential boom imminent, data analytics and its related fields of study like Machine Learning and Artificial Intelligence will be impacting human lives marginally in the next five to ten years. 

As it turns out, now’s an excellent time to kick-start your journey in Data Science & Machine Learning. upGrad’s Advanced Certificate Programme in Data Science 8-month program from IIIT-B covers relevant world-class technologies and concepts like Statistics, Python Programming, Predictive Analytics using Python, Basic & Advanced SQL, Visualization using Python, EDA, Basic & Advanced Machine Learning Algorithms. 

The course is taught by renowned data science experts who rely on relevant industry projects and a cutting-edge curriculum to help students develop the necessary skills to succeed in the field. The course also includes 360° career support, industry mentorship & peer to peer networking for sharper outcomes.

background

Liverpool John Moores University

MS in Data Science

Double Credentials

Master's Degree17 Months

Placement Assistance

Certification6 Months

Unlock the power of data with our popular Data Science courses, designed to make you proficient in analytics, machine learning, and big data!

Elevate your career by learning essential Data Science skills such as statistical modeling, big data processing, predictive analytics, and SQL!

Stay informed and inspired with our popular Data Science articles, offering expert insights, trends, and practical tips for aspiring data professionals!

Subscribe to upGrad's Newsletter

Join thousands of learners who receive useful tips

Promise we won't spam!

Reference:
https://www.cio.com/article/3273114/what-is-predictive-analytics-transforming-data-into-future-insights.amp.html

Frequently Asked Questions (FAQs)

1. What are some examples of predictive analytics?

2. What are some of the tools used for predictive analysis?

3. What are some of the prominent open-source tools used for predictive analytics?

4. What is the official definition of predictive analysis?

5. What are the typical stages of a predictive analytics workflow?

6. How is predictive analytics different from descriptive analytics?

7. What are the main types of predictive analysis models?

8. What is a 'predictive model' and how is it built?

9. What kind of data is required for building effective predictive models?

10. What are some common challenges encountered in predictive analysis projects?

11. Can you explain the difference between classification and regression models?

12. How does predictive analytics improve business decision-making?

13. What skills are essential for a data scientist working on predictive analytics?

14. How does machine learning relate to the definition of predictive analysis?

15. Beyond classification and regression, what are other types of predictive analysis techniques?

16. How do you measure the success or ROI of a predictive model?

17. What is the first step when starting new predictive analysis projects?

18. Why is data quality so important for predictive analytics?

19. What are the ethical considerations to keep in mind with predictive analytics?

20. What is 'overfitting' in a predictive model and how can it be avoided in predictive analysis projects?

Aaron Edgell

23 articles published

Aaron Edgell is a seasoned digital marketing leader specializing in tech, education, and health & wellness, with over a decade of experience driving growth for award-winning agencies and high-impact b...

Speak with Data Science Expert

+91

By submitting, I accept the T&C and
Privacy Policy

Start Your Career in Data Science Today

Top Resources

Recommended Programs

upGrad Logo

Certification

3 Months

Liverpool John Moores University Logo
bestseller

Liverpool John Moores University

MS in Data Science

Double Credentials

Master's Degree

17 Months

IIIT Bangalore logo
bestseller

The International Institute of Information Technology, Bangalore

Executive Diploma in Data Science & AI

360° Career Support

Executive PG Program

12 Months