Diabetes Prediction Analysis Project Using R

By Rohit Sharma

Updated on Aug 11, 2025 | 16 min read | 1.4K+ views

Share:

Diabetes is one of the most prevalent diseases in the current times. With cases rising from 200 million in 1990 to 830 million in 2022, according to the WHO. This Diabetes Prediction Analysis Project in R will focus on building machine learning models to predict the likelihood of diabetes based on health-related factors like age, BMI, blood glucose level, and more. 

Using R in Google Colab, this beginner-friendly project walks through data loading, cleaning, exploration, and modeling using Logistic Regression and Random Forest. 

It helps users understand classification techniques, evaluate model performance, and visualize key trends in the data. This project is ideal for those looking to apply predictive analytics in healthcare using R.

Master Python, Machine Learning, AI, Tableau, and SQL through expert-led online data science programs built for tomorrow’s data leaders. Learn by doing, grow with mentorship, and stay ahead in the data-first world. Enrol today and make insights your impact.

Also Read: Top 25+ R Projects for Beginners to Boost Your Data Science Skills in 2025

What Skills and Tools Will You Need for This Diabetes Prediction Project?

Before starting the Diabetes Prediction Analysis Project in R, it's necessary to understand what you’ll be working with. This project is designed for beginners and uses simple tools and libraries in R. The table below shows the required tools, libraries, and skills you’ll need for this project.

Category

Details

Programming Tool R (executed in Google Colab)
Main Libraries tidyverse, caret, caTools, e1071, randomForest, ggplot2
Project Type Binary classification using supervised learning
Machine Learning Logistic RegressionRandom Forest
Data Handling Data cleaning, exploration, and preprocessing
Evaluation Skills Accuracy, confusion matrix, performance comparison
Data Visualization Scatter plots, feature relationships using ggplot2
Skill Level Beginner (no advanced ML or R skills required)
Estimated Time 1.5 to 2 hours

Launch your career with globally recognized programs in Data Science and AI from top universities. Gain skills, industry mentorship, and credentials that set you apart. Enrol today—lead tomorrow’s data revolution.

Step-by-Step Guide to Building the Diabetes Prediction Model in R

In this section, we’ll see how to build this diabetes prediction model using R. The code for each step is given along with the output and explanation.

Step 1 – Configuring Google Colab for R

To begin working with R in Google Colab, it's important to switch the notebook’s default language from Python to R. This enables the execution of R code directly within the environment. 

To do this, open a new Colab notebook and click on the Runtime menu at the top. Choose the Change runtime type option. In the dialog box that shows up, change the language setting to R using the dropdown menu and then click Save.

Step 2 – Installing and Loading Required Libraries

In this step, we prepare the environment by installing and loading the libraries needed for steps like data handling, model training, data splitting, and evaluation. We only need to install the packages once, but we must load them every time you run the notebook.

# Install essential libraries (run only once)
install.packages("tidyverse")     # For data wrangling and visualization
install.packages("caret")         # For machine learning algorithms and evaluation
install.packages("caTools")       # For splitting the dataset into train/test
install.packages("e1071")         # For SVM models and performance metrics

# Load the installed libraries
library(tidyverse)   # Load tidyverse for data handling and plotting
library(caret)       # Load caret for model training and evaluation
library(caTools)     # Load caTools for splitting data
library(e1071)       # Load e1071 for classification tools like confusion matrix

The above code installs and loads the essential libraries required for the Diabetes Prediction Analysis Project. The output confirms that the libraries are installed and loaded correctly.

Installing package into ‘/usr/local/lib/R/site-library’

(as ‘lib’ is unspecified)

 

Installing package into ‘/usr/local/lib/R/site-library’

(as ‘lib’ is unspecified)

 

also installing the dependencies ‘listenv’, ‘parallelly’, ‘future’, ‘globals’, ‘shape’, ‘future.apply’, ‘numDeriv’, ‘progressr’, ‘SQUAREM’, ‘diagram’, ‘lava’, ‘prodlim’, ‘proxy’, ‘iterators’, ‘clock’, ‘gower’, ‘hardhat’, ‘ipred’, ‘sparsevctrs’, ‘timeDate’, ‘e1071’, ‘foreach’, ‘ModelMetrics’, ‘plyr’, ‘pROC’, ‘recipes’, ‘reshape2’

 

Installing package into ‘/usr/local/lib/R/site-library’

(as ‘lib’ is unspecified)

 

also installing the dependency ‘bitops’

 

Installing package into ‘/usr/local/lib/R/site-library’

(as ‘lib’ is unspecified)

 

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──

 dplyr    1.1.4      readr    2.1.5

 forcats  1.0.0      stringr  1.5.1

 ggplot2  3.5.2      tibble   3.3.0

 lubridate 1.9.4      tidyr    1.3.1

 purrr    1.1.0     

── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──

 dplyr::filter() masks stats::filter()

 dplyr::lag()    masks stats::lag()

Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Loading required package: lattice

 

Attaching package: ‘caret’

 

The following object is masked from ‘package:purrr’:

 

    lift

Check this R project: Loan Approval Classification Using Logistic Regression in R

Step 3 – Loading the Dataset

In this step, we will load the diabetes dataset directly from the path where it was uploaded in your Colab environment. After loading the data into a variable, the first few rows are displayed to get a look at the structure and values in the dataset. The code for this step is:

# Load the dataset directly from the uploaded path
data <- read.csv("diabetes prediction dataset.csv")

# View the first few rows of the dataset
head(data)  # Displays the top rows to understand the structure

The above code loads the dataset and also gives us a glimpse of the dataset we’re working with:

 

gender

age

hypertension

heart_disease

smoking_history

bmi

HbA1c_level

blood_glucose_level

diabetes

 

<chr>

<dbl>

<int>

<int>

<chr>

<dbl>

<dbl>

<int>

<int>

1

Female

80

0

1

never

25.19

6.6

140

0

2

Female

54

0

0

No Info

27.32

6.6

80

0

3

Male

28

0

0

never

27.32

5.7

158

0

4

Female

36

0

0

current

23.45

5.0

155

0

5

Male

76

1

1

current

20.14

4.8

155

0

6

Female

20

0

0

never

27.32

6.6

85

0

 

Here’s an R project for you:  Player Performance Analysis & Prediction Using R

Step 4 – Exploring the Dataset

This step helps us understand the dataset’s structure, types of variables, and whether there are any missing values. A statistical summary of each column is also generated to give an overview of the data distribution. Here’s the code to explore the dataset:

# Check structure of the dataset
str(data)  # Shows data types and column structure

# Check if there are any missing values
colSums(is.na(data))  # Summarizes missing values per column

# Summary statistics
summary(data)  # Gives min, max, mean, and quartiles for each column

The above code gives us a summary of the dataset for us to understand it better.

'data.frame': 100000 obs. of  9 variables:

 $ gender             : chr  "Female" "Female" "Male" "Female" ...

 $ age                : num  80 54 28 36 76 20 44 79 42 32 ...

 $ hypertension       : int  0 0 0 0 1 0 0 0 0 0 ...

 $ heart_disease      : int  1 0 0 0 1 0 0 0 0 0 ...

 $ smoking_history    : chr  "never" "No Info" "never" "current" ...

 $ bmi                : num  25.2 27.3 27.3 23.4 20.1 ...

 $ HbA1c_level        : num  6.6 6.6 5.7 5 4.8 6.6 6.5 5.7 4.8 5 ...

 $ blood_glucose_level: int  140 80 158 155 155 85 200 85 145 100 ...

 $ diabetes           : int  0 0 0 0 0 0 1 0 0 0 ...

 

gender0age0hypertension0heart_disease0smoking_history0bmi0HbA1c_level0blood_glucose_level0diabetes0

   gender               age         hypertension     heart_disease    

 Length:100000      Min.   : 0.08   Min.   :0.00000   Min.   :0.00000  

 Class :character   1st Qu.:24.00   1st Qu.:0.00000   1st Qu.:0.00000  

 Mode  :character   Median :43.00   Median :0.00000   Median :0.00000  

                    Mean   :41.89   Mean   :0.07485   Mean   :0.03942  

                    3rd Qu.:60.00   3rd Qu.:0.00000   3rd Qu.:0.00000  

                    Max.   :80.00   Max.   :1.00000   Max.   :1.00000  

 smoking_history         bmi         HbA1c_level    blood_glucose_level

 Length:100000      Min.   :10.01   Min.   :3.500   Min.   : 80.0      

 Class :character   1st Qu.:23.63   1st Qu.:4.800   1st Qu.:100.0      

 Mode  :character   Median :27.32   Median :5.800   Median :140.0      

                    Mean   :27.32   Mean   :5.528   Mean   :138.1      

                    3rd Qu.:29.58   3rd Qu.:6.200   3rd Qu.:159.0      

                    Max.   :95.69   Max.   :9.000   Max.   :300.0      

    diabetes    

 Min.   :0.000  

 1st Qu.:0.000  

 Median :0.000  

 Mean   :0.085  

 3rd Qu.:0.000  

 Max.   :1.000 

Step 5 – Data Preprocessing: Cleaning and Formatting

In this section, we begin preparing the dataset for modeling. We reconfirm the structure and check for missing values. We also convert the target column diabetes into a factor to make it suitable for classification algorithms and examine the class distribution.

# View dataset structure
str(data)  # Displays column names, data types, and sample data

# Check for missing values
colSums(is.na(data))  # Shows count of NA values per column

# Summary statistics
summary(data)  # Provides descriptive statistics for numeric columns

# Convert the target column 'diabetes' to factor
data$diabetes <- as.factor(data$diabetes)  # Ensures classification algorithms treat it as categorical

# Check class balance
table(data$diabetes)  # Displays the count of each class (0 = No, 1 = Yes)

The above code checks for missing values and converts the diabetes target column for further classification steps.

'data.frame': 100000 obs. of  9 variables:

 $ gender             : chr  "Female" "Female" "Male" "Female" ...

 $ age                : num  80 54 28 36 76 20 44 79 42 32 ...

 $ hypertension       : int  0 0 0 0 1 0 0 0 0 0 ...

 $ heart_disease      : int  1 0 0 0 1 0 0 0 0 0 ...

 $ smoking_history    : chr  "never" "No Info" "never" "current" ...

 $ bmi                : num  25.2 27.3 27.3 23.4 20.1 ...

 $ HbA1c_level        : num  6.6 6.6 5.7 5 4.8 6.6 6.5 5.7 4.8 5 ...

 $ blood_glucose_level: int  140 80 158 155 155 85 200 85 145 100 ...

 $ diabetes           : int  0 0 0 0 0 0 1 0 0 0 ...

 

gender0age0hypertension0heart_disease0smoking_history0bmi0HbA1c_level0blood_glucose_level0diabetes0

   gender               age         hypertension     heart_disease    

 Length:100000      Min.   : 0.08   Min.   :0.00000   Min.   :0.00000  

 Class :character   1st Qu.:24.00   1st Qu.:0.00000   1st Qu.:0.00000  

 Mode  :character   Median :43.00   Median :0.00000   Median :0.00000  

                    Mean   :41.89   Mean   :0.07485   Mean   :0.03942  

                    3rd Qu.:60.00   3rd Qu.:0.00000   3rd Qu.:0.00000  

                    Max.   :80.00   Max.   :1.00000   Max.   :1.00000  

 smoking_history         bmi         HbA1c_level    blood_glucose_level

 Length:100000      Min.   :10.01   Min.   :3.500   Min.   : 80.0      

 Class :character   1st Qu.:23.63   1st Qu.:4.800   1st Qu.:100.0      

 Mode  :character   Median :27.32   Median :5.800   Median :140.0      

                    Mean   :27.32   Mean   :5.528   Mean   :138.1      

                    3rd Qu.:29.58   3rd Qu.:6.200   3rd Qu.:159.0      

                    Max.   :95.69   Max.   :9.000   Max.   :300.0      

    diabetes    

 Min.   :0.000  

 1st Qu.:0.000  

 Median :0.000  

 Mean   :0.085  

 3rd Qu.:0.000  

 Max.   :1.000 

   0     1 

91500  8500

Read More: Spotify Music Data Analysis Project in R

Step 6 – Split the Dataset into Training and Testing Sets

Before building our prediction model, we divide the dataset into two parts: training data (used to build the model) and testing data (used to evaluate it). This will ensure we can validate how well the model performs on unseen data. The code for this step is:

# Load library for splitting
library(caTools)  # Used for creating a random split of the dataset

# Set seed so results are reproducible
set.seed(123)  # Ensures you get the same split each time you run it

# Split the data: 80% training, 20% testing
split <- sample.split(data$diabetes, SplitRatio = 0.8)

train_data <- subset(data, split == TRUE)  # Training dataset
test_data  <- subset(data, split == FALSE) # Testing dataset

# Check sizes of train and test sets
nrow(train_data)  # Number of rows in training set
nrow(test_data)   # Number of rows in testing set

The output shows the number of data it is trained on and the number of data it will test the model on.

80000

20000

Step 7 – Train a Logistic Regression Model

We will now build our first prediction model using logistic regression, which is ideal for binary classification tasks like predicting diabetes (Yes/No). We'll train it on the training dataset using all available features.

# Train the logistic regression model
model <- glm(diabetes ~ ., data = train_data, family = "binomial")  # Fit the model on training data

# See the summary of the model
summary(model)  # Displays coefficients, significance levels, and performance stats

The output for the above step is:

Call:

glm(formula = diabetes ~ ., family = "binomial", data = train_data)

 

Coefficients:

                             Estimate Std. Error z value Pr(>|z|)    

(Intercept)                -26.954480   0.325317 -82.856  < 2e-16 ***

genderMale                   0.304376   0.040292   7.554 4.21e-14 ***

genderOther                 -9.889076 131.261959  -0.075    0.940    

age                          0.045976   0.001256  36.600  < 2e-16 ***

hypertension                 0.732500   0.052698  13.900  < 2e-16 ***

heart_disease                0.741719   0.067819  10.937  < 2e-16 ***

smoking_historyever         -0.062610   0.102914  -0.608    0.543    

smoking_historyformer       -0.114614   0.078173  -1.466    0.143    

smoking_historynever        -0.166353   0.067704  -2.457    0.014 *  

smoking_historyNo Info      -0.735032   0.074307  -9.892  < 2e-16 ***

smoking_historynot current  -0.150201   0.092239  -1.628    0.103    

bmi                          0.086639   0.002831  30.609  < 2e-16 ***

HbA1c_level                  2.335872   0.039810  58.675  < 2e-16 ***

blood_glucose_level          0.033147   0.000538  61.615  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 

(Dispersion parameter for binomial family taken to be 1)

 

    Null deviance: 46530  on 79999  degrees of freedom

Residual deviance: 18166  on 79986  degrees of freedom

AIC: 18194

 

Number of Fisher Scoring iterations: 12

The above output implies that:

  • Important Features: Age, BMI, blood sugar, and HbA1c level are strong predictors of diabetes.
  • Effect Direction: Higher values of age, BMI, HbA1c, and glucose increase diabetes risk.
  • Model Fit: The model explains the data much better than using no predictors.
  • Not All Features Help: Some features (like genderOther) don’t affect the result much.

Some R projects you can try: Forest Fire Project Using R - A Step-by-Step GuideMovie Rating Analysis Project in R

Step 8 – Make Predictions on the Test Data

In this step, we will use the trained logistic regression model to predict the probability of diabetes for each test case. Then, we will convert those probabilities into binary classes (0 or 1) using a threshold of 0.5.

# Predict probabilities on the test set
pred_prob <- predict(model, newdata = test_data, type = "response")  # Get predicted probabilities

# Convert probabilities to binary predictions (threshold = 0.5)
pred_class <- ifelse(pred_prob > 0.5, 1, 0)  # Assign class labels based on threshold
pred_class <- as.factor(pred_class)         # Convert to factor for evaluation

Step 9 – Evaluate Model Accuracy Using Confusion Matrix

Now we will evaluate how well our model performed on the test set. We’ll compare the predicted values against the actual ones using a confusion matrix to get metrics like accuracy, sensitivity, and specificity. Here’s the code:

# Load caret package for evaluation
library(caret)

# Convert actual values to factor to match prediction format
actual_class <- as.factor(test_data$diabetes)

# Generate confusion matrix
confusionMatrix(pred_class, actual_class)

The output for the above code is:

Confusion Matrix and Statistics

 

          Reference

Prediction     0     1

         0 18137   643

         1   163  1057

                                          

               Accuracy : 0.9597          

                 95% CI : (0.9569, 0.9624)

    No Information Rate : 0.915           

    P-Value [Acc > NIR] : < 2.2e-16       

                                          

                  Kappa : 0.7029          

                                          

 Mcnemar's Test P-Value : < 2.2e-16       

                                          

            Sensitivity : 0.9911          

            Specificity : 0.6218          

         Pos Pred Value : 0.9658          

         Neg Pred Value : 0.8664          

             Prevalence : 0.9150          

         Detection Rate : 0.9069          

   Detection Prevalence : 0.9390          

      Balanced Accuracy : 0.8064          

                                          

       'Positive' Class : 0               

The above output shows that:

  • High Overall Accuracy: The model correctly predicted 95.97% of the cases. This is a strong overall performance.
  • Sensitivity is Excellent (0.9911): It correctly identified almost all actual negative cases (class 0).
  • Specificity is Moderate (0.6218): It’s less effective at identifying actual positive cases (class 1).
  • Kappa Score (0.70): Shows good agreement between predicted and actual labels, beyond random chance.

Must Read: Natural Disaster Prediction Analysis Project in R

Step 10 – Visualize the Relationship Between Glucose, BMI, and Diabetes

To explore how blood glucose level and BMI relate to diabetes, we'll use a scatter plot. By coloring points by diabetes status, we can visually observe how individuals with and without diabetes cluster based on these health metrics. Here’s the code:

# Load ggplot2 (comes with tidyverse)
library(ggplot2)

# Glucose vs BMI plot colored by diabetes
ggplot(data, aes(x = blood_glucose_level, y = bmi, color = diabetes)) +
  geom_point(alpha = 0.5) +
  labs(title = "BMI vs Blood Glucose Level by Diabetes Status",
       x = "Blood Glucose Level",
       y = "BMI") +
  theme_minimal()

The above code gives us a graphical representation of the BMI vs Blood Glucose levels by diabetes status.

background

Liverpool John Moores University

MS in Data Science

Double Credentials

Master's Degree17 Months

Placement Assistance

Certification6 Months

The above graph shows that:

  • Higher Glucose, Higher Diabetes Risk:
    Most people with high blood glucose levels (200+) are labeled with diabetes (1, shown in blue).
  • Low Glucose, Mostly No Diabetes:
    People with lower glucose levels (below ~150) are mostly non-diabetic (0, shown in red).
  • BMI is Spread Out:
    BMI doesn't clearly separate diabetics and non-diabetics. People from both groups have a wide range of BMI values.

Step 11 – Build the Random Forest Model for Diabetes Prediction

To improve accuracy and handle complex relationships in the data, we’ll now use the Random Forest algorithm. This method combines multiple decision trees to reduce overfitting and improve prediction performance. Here’s the code:

# Install randomForest package (only once)
install.packages("randomForest")

# Load the package
library(randomForest)

The output confirms the installation and loading of the Random Forest package.

Installing package into ‘/usr/local/lib/R/site-library’

(as ‘lib’ is unspecified)

 

randomForest 4.7-1.2

 

Type rfNews() to see new features/changes/bug fixes.

 

 

Attaching package: ‘randomForest’

 

The following object is masked from ‘package:dplyr’:

 

    combine

 

The following object is masked from ‘package:ggplot2’:

 

    margin

Read This: How to Build an Uber Data Analysis Project in R

Step 12 – Train the Random Forest Model on the Training Data

Now that the package is installed and loaded, we can train the Random Forest model. We'll use the randomForest() function and specify the number of trees to grow (ntree). Setting a seed ensures reproducibility of results. Here’s the code to train the model:

# Train the random forest model
set.seed(123)  # For reproducibility

rf_model <- randomForest(diabetes ~ ., data = train_data, ntree = 100)

# View the model summary
print(rf_model)

The output of the above code is:

Call:

 randomForest(formula = diabetes ~ ., data = train_data, ntree = 100) 

               Type of random forest: classification

                     Number of trees: 100

No. of variables tried at each split: 2

 

        OOB estimate of  error rate: 2.82%

Confusion matrix:

      0    1  class.error

0 73166   34 0.0004644809

1  2223 4577 0.3269117647

The above output means that:

  • Model Accuracy: The Out-of-Bag (OOB) error rate is 2.82%, meaning the model predicts correctly about 97.18% of the time on unseen training samples.
  • Class 0 Accuracy: The model performs very well on class 0 (non-diabetic), with a very low error rate of 0.046%.
  • Class 1 Accuracy: The model struggles more with class 1 (diabetic), with a 32.7% error rate, meaning it often misclassifies diabetic cases.

Here’s a Fun R Project:  Car Data Analysis Project Using R

Step 13 – Make Predictions Using the Random Forest Model

Once the Random Forest model is trained, the next step is to use it for predicting diabetes on unseen test data. We'll use the predict() function to generate predictions and preview the first few results. Here’s the code:

# Predict on the test data
rf_pred <- predict(rf_model, newdata = test_data)

# View prediction results
head(rf_pred)

The output for this step is:

4:  05:  07:  09:  012:  017:  0

Levels:

  • '0' '1'

This means that:
The “Levels: '0' '1'” confirms the prediction output is a factor with two levels:

  • '0' (no diabetes)
  • '1' (diabetes)

Step 14 – Evaluate Model Performance Using a Confusion Matrix

To measure how well our Random Forest model performed on unseen data, we use a confusion matrix. This will show us how many instances were correctly or incorrectly classified into diabetic (1) and non-diabetic (0) categories. Here’s the code:

# Evaluate predictions using confusion matrix
confusionMatrix(rf_pred, as.factor(test_data$diabetes))

The above code gives us the output:

Confusion Matrix and Statistics

 

          Reference

Prediction     0     1

         0 18296   554

         1     4  1146

                                          

               Accuracy : 0.9721          

                 95% CI : (0.9697, 0.9743)

    No Information Rate : 0.915           

    P-Value [Acc > NIR] : < 2.2e-16       

                                          

                  Kappa : 0.7898          

                                          

 Mcnemar's Test P-Value : < 2.2e-16       

                                          

            Sensitivity : 0.9998          

            Specificity : 0.6741          

         Pos Pred Value : 0.9706          

         Neg Pred Value : 0.9965          

             Prevalence : 0.9150          

         Detection Rate : 0.9148          

   Detection Prevalence : 0.9425          

      Balanced Accuracy : 0.8369          

                                          

       'Positive' Class : 0               

The above output shows that:

  • High Accuracy: The model correctly predicted 97.21% of the cases overall.
  • Sensitivity (0.9998): It identified almost all non-diabetic cases (class 0) correctly.
  • Specificity (0.6741): It was less accurate in detecting diabetic cases (class 1), missing some.
  • Kappa (0.7898): Indicates strong agreement between predicted and actual outcomes, beyond random chance.
  • Balanced Accuracy (0.8369): Provides a fair performance score by averaging sensitivity and specificity.

You Can Also Build This R Project: Wine Quality Prediction Project in R

Step 15 – Compare Model Accuracies – Logistic Regression vs Random Forest

After building and testing both models, it’s important to compare their prediction accuracies to determine which performs better on the test data. Here’s the code to compare both models.

# Logistic Regression Accuracy
log_accuracy <- mean(pred_class == test_data$diabetes)

# Random Forest Accuracy
rf_accuracy <- mean(rf_pred == test_data$diabetes)

# Print both
cat("Logistic Regression Accuracy:", round(log_accuracy * 100, 2), "%\n")
cat("Random Forest Accuracy:", round(rf_accuracy * 100, 2), "%\n")

The output for this gives us the comparison of both models’ performance:

Logistic Regression Accuracy: 95.97 %

Random Forest Accuracy: 97.21 %

This shows that the Random Forest model achieved higher accuracy in diabetes prediction using the given dataset.

Conclusion

In this Diabetes Prediction project, we used R in Google Colab to build and compare two models: Logistic Regression and Random Forest. 

After preprocessing the dataset, we split it into training and testing sets, then trained both models to classify individuals as diabetic or not. 

Evaluation was done using accuracy scores and confusion matrices. The Random Forest model outperformed Logistic Regression, achieving a higher accuracy of 97.21% compared to 77.15%.

Unlock the power of data with our popular Data Science courses, designed to make you proficient in analytics, machine learning, and big data!

Subscribe to upGrad's Newsletter

Join thousands of learners who receive useful tips

Promise we won't spam!

Elevate your career by learning essential Data Science skills such as statistical modeling, big data processing, predictive analytics, and SQL!

Stay informed and inspired with our popular Data Science articles, offering expert insights, trends, and practical tips for aspiring data professionals!

Reference:
https://www.who.int/news-room/fact-sheets/detail/diabetes

Colab Link:
https://colab.research.google.com/drive/1QSOP_QsfGcYGBXIiMWbWjnZGsbe1_kBj#scrollTo=nQZQPytZDzcM

Frequently Asked Questions (FAQs)

1. What is the Diabetes Prediction project about, and why is it important?

2. Which tools and libraries are used for this diabetes prediction project in R?

3. What machine learning models can be used for predicting diabetes in R?

4. How do you evaluate model performance in a diabetes prediction project?

5. What are other beginner-friendly projects like diabetes prediction in R?

Rohit Sharma

834 articles published

Rohit Sharma is the Head of Revenue & Programs (International), with over 8 years of experience in business analytics, EdTech, and program management. He holds an M.Tech from IIT Delhi and specializes...

Speak with Data Science Expert

+91

By submitting, I accept the T&C and
Privacy Policy

Start Your Career in Data Science Today

Top Resources

Recommended Programs

upGrad Logo

Certification

3 Months

Liverpool John Moores University Logo
bestseller

Liverpool John Moores University

MS in Data Science

Double Credentials

Master's Degree

17 Months

IIIT Bangalore logo
bestseller

The International Institute of Information Technology, Bangalore

Executive Diploma in Data Science & AI

360° Career Support

Executive PG Program

12 Months