What Is the BERT Model?

By upGrad

Updated on Jan 28, 2026 | 8 min read | 2.11K+ views

Share:

BERT (Bidirectional Encoder Representations from Transformers) is a Google AI language model released in 2018 for natural language processing. It uses a bidirectional transformer encoder to read text from both sides at the same time. This helps the model understand word relationships and context more accurately than sequential language models. 

In this blog, you will learn what the BERT model is, how it works, why it matters, and where it is used today. 

Build a strong understanding of the BERT model with upGrad’s Generative AI and Agentic AI courses. Learn how transformer-based language models work in real NLP tasks and gain hands-on experience with modern LLMs. 

What Is the BERT Model and the Idea Behind It 

BERT is a language model created to help computers understand text the way people do. Instead of looking at words one by one, it learns how words relate to each other inside a sentence. 

This shift was so significant that when Google integrated it into their core product, Pandu Nayak (Google VP of Search) described it as "the biggest leap forward in the past five years, and one of the biggest leaps forward in the history of Search." 

Prepare for real-world Agentic AI roles with the Executive Post Graduate Programme in Generative AI and Agentic AI by IIT Kharagpur.    

The Key Idea: Bidirectionality- The secret to this "leap" is reading text from both directions at the same time. Earlier models read from left-to-right, often missing the context of words that appeared later in the sentence. BERT solved this by learning full sentence relationships in a single pass. 

Key ideas behind the model: 

  • Bidirectional Context: It understands context from both the left and right sides of a word simultaneously. 
  • Transformer Encoder: It uses specific layers to focus on language understanding rather than generation. 
  • Context Awareness: It performs exceptionally well on tasks requiring deep comprehension, like answering questions or analyzing sentiment. 

Also Read: What is Generative AI? Understanding Key Applications and Its Role in the Future of Work 

BERT Model Architecture  

The BERT model is built using the encoder part of the transformer architecture. It does not generate text. Its only goal is to understand language deeply by learning context from full sentences. 

At the core, the architecture stacks multiple transformer encoder layers. Each layer processes the entire sentence at once and refines understanding step by step. 

Also Read: Why Is Controlling the Output of Generative AI Systems Important? 

Main components of the architecture 

  • Token embeddings to represent words or sub words 
  • Positional embeddings to capture word order 
  • Segment embeddings to distinguish sentence pairs 
  • Multi-head self-attention to learn word relationships 
  • Feed-forward layers to refine representations 

Each word attends to every other word in the sentence. This helps the model understand meaning based on context, not position alone. 

Component 

Role 

Token embeddings  Represent word meaning 
Positional embeddings  Preserve word order 
Self-attention  Capture relationships 
Encoder layers  Build deep understanding 

This encoder-only design is what makes the BERT model strong at tasks like classification, search relevance, and question answering. 

Also Read: Generative AI Course Eligibility: Who Should Enroll 

Training Approach Used in the BERT Model 

The BERT model is trained using self-supervised learning. It learns from large amounts of raw text without needing labeled data during pretraining. This makes training scalable and flexible across many domains. 

BERT uses two core training tasks that focus on understanding language, not predicting text in order. 

Masked Language Modeling 

  • Some words in a sentence are hidden 
  • The model predicts missing words using surrounding context 
  • Both left and right context are used 

Next Sentence Prediction 

  • The model sees pairs of sentences 
  • It learns whether the second sentence logically follows the first 
  • This builds sentence-level understanding 

Training Task 

What It Teaches 

Masked prediction  Word meaning in context 
Sentence relationship  Logical flow of text 

Also Read: The Evolution of Generative AI From GANs to Transformer Models 

Common Applications of the BERT Model 

The BERT model is designed for language understanding tasks. It does not generate long text. Instead, it helps systems interpret meaning, intent, and context within written language. 

Because it understands full sentence context, it performs well across many real-world NLP problems. 

Typical use cases 

  • Search relevance ranking 
  • Question answering systems 
  • Sentiment analysis 
  • Text classification 
  • Named entity recognition 

Also Read: 23+ Top Applications of Generative AI Across Different Industries in 2025 

BERT helps systems move beyond keyword matching and focus on meaning. 

Application 

Role 

Search engines  Understand query intent and context 
Chat interfaces  Interpret user input accurately 
Content moderation  Classify and filter text 
Analytics  Extract insights from large text data 

These use cases explain why the BERT model is widely adopted in production systems where accurate language understanding is critical. 

Also Read: Difference Between LLM and Generative AI 

BERT Variants and Improvements 

Several models extend the original BERT idea while keeping the same focus on bidirectional language understanding. These variants were created to improve training efficiency, reduce model size, or adapt BERT to specific domains. 

Variant 

Purpose 

RoBERTa  Improves training strategy and data usage 
DistilBERT  Provides faster inference with fewer parameters 
ALBERT  Reduces model size through parameter sharing 
Domain-specific BERT  Adapts language understanding to specific industries 

Also Read: Highest Paying Generative AI Jobs in India (2026) 

BERT vs GPT: Key Differences Explained 

BERT and GPT are both transformer-based language models, but they are built for different goals. BERT focuses on understanding text, while GPT is designed to generate text. This difference shapes how each model is trained and where it is used. 

Aspect 

BERT 

GPT 

Core goal  Language understanding  Language generation 
Direction  Bidirectional  Left-to-right 
Training style  Masked word prediction  Next-word prediction 
Best suited for  Classification and search  Content creation 
Text generation  Not designed for it  Core capability 

This comparison helps clarify why BERT is preferred for analysis tasks, while GPT is used for writing and conversation. 

Also Read: Generative AI vs Traditional AI: Which One Is Right for You? 

Conclusion 

The BERT model reshaped how machines understand language. By learning context in both directions, it solved key problems in earlier NLP systems. Its training approach, flexibility, and strong performance made it a foundation for modern language understanding tasks across industries. 

Take the next step in your Generative AI journey by booking a free counseling session. Get personalized guidance from our experts and learn how to build practical skills for real-world AI roles. 

Frequently Asked Questions (FAQs)

1. What is the BERT model used for in NLP?

The BERT model is mainly used for understanding text rather than generating it. It helps systems analyze meaning, intent, and context in tasks like search ranking, question answering, sentiment analysis, and text classification across many real-world language applications. 

2. What is BERT model architecture based on?

It is built on the transformer encoder architecture. The design focuses on learning relationships between words using self-attention, allowing the system to understand full sentence context instead of processing words sequentially like older language models. 

3. How does the BERT language model understand context?

The BERT language model reads text in both directions at the same time. This allows each word to learn from the words before and after it, improving understanding of meaning, references, and sentence structure in complex language inputs. 

4. What is BERT model training methodology?

Training uses self-supervised learning on large text datasets. Words are hidden and predicted using surrounding context, and sentence pairs are evaluated for logical order. This teaches deep language understanding without requiring labeled training data. 

5. Why is the BERT model better than older NLP models?

Older models processed text in a single direction and often missed context. This model learns bidirectional relationships, which improves accuracy in understanding meaning, intent, and sentence structure across short and long text inputs. 

6. What is the difference between BERT and GPT models?

BERT focuses on understanding text by analyzing full context, while GPT focuses on generating text by predicting the next word. Their training goals look similar but lead to very different strengths in practical NLP tasks. 

7. Can beginners learn BERT model easily?

Yes. Beginners can understand it by focusing on core ideas like bidirectional context, attention, and pretraining. You do not need deep mathematics to grasp how the architecture processes and understands language. 

8. Is the BERT language model used for text generation?

No. It is not designed to generate long responses or creative text. Instead, it produces strong contextual representations that other systems use for tasks like classification, search relevance, and entity recognition. 

9. What tasks benefit most from the BERT model?

Tasks that require strong language understanding benefit the most. These include sentiment analysis, question answering, named entity recognition, document classification, and search intent analysis across structured and unstructured text data. 

10. How does BERT handle long sentences?

It processes all words at once using attention, allowing relationships to be learned across long sentences. However, very long documents may need to be split into smaller chunks for best performance. 

11. What is BERT model fine-tuning?

Fine-tuning adapts a pretrained model to a specific task using labeled data. This step helps it perform better on domain-specific problems like customer feedback analysis or legal document classification. 

12. Is the BERT model multilingual?

Yes. Multilingual versions are trained on text from many languages. They share representations across languages, allowing understanding of different scripts and grammar patterns within a single trained model. 

13. Why is attention important in the BERT language model?

Attention allows the model to focus on important words while processing text. It helps identify relationships between distant words, resolve references, and capture meaning across full sentences and paragraphs. 

14. Does the BERT model require large computing resources?

Pretraining requires high memory and processing power. However, fine-tuning and inference can be done on modest hardware using smaller variants designed for efficiency and faster performance. 

15. What industries use the BERT model today?

Search engines, healthcare platforms, financial services, education tools, and customer support systems use it widely. Any industry that relies on accurate language understanding benefits from its contextual analysis capabilities. 

16. What is the biggest limitation of the BERT model?

It is not designed for text generation and can be slow during inference. It also struggles with very long documents unless combined with additional techniques or specialized variants. 

17. Are there lighter alternatives to the BERT model?

Yes. Variants like DistilBERT and ALBERT reduce size and speed up processing while keeping most of the original understanding capability. These are useful for production systems with limited resources. 

18. How does BERT improve search engines?

It helps search systems understand user intent instead of matching keywords. This improves result relevance by focusing on meaning, context, and relationships between words in user queries. 

19. Can the BERT language model work offline?

Yes. Pretrained models can be downloaded and run locally after setup. This allows usage in offline environments where internet access or cloud services are restricted. 

20. Is learning what is BERT model useful for NLP careers?

Yes. Understanding it builds a strong foundation for modern NLP. Many newer models extend its ideas, making it an essential concept for anyone working with language understanding systems. 

upGrad

609 articles published

We are an online education platform providing industry-relevant programs for professionals, designed and delivered in collaboration with world-class faculty and businesses. Merging the latest technolo...

Get Free Consultation

+91

By submitting, I accept the T&C and
Privacy Policy