HomeBlogArtificial Intelligence2023, The Year of AutoML?

2023, The Year of AutoML?

Read it in 5 Mins

Last updated:
6th Oct, 2022
Views
1,502
In this article
View All
2023, The Year of AutoML?

AutoML, with its ability to perform data pre-processing, ETL tasks, and transformation, will likely become the most popular trend for the year 2023. With the advent of big data, advanced analytics, and predictive models, data scientists today are expected to possess more talent and updated skills when it comes to handling artificial intelligence and machine learning. But these highly skilled data scientists are rare to find. However, bridging the skills gap, the other side of the herd has not only been able to survive but are also capable of building models using the best diagnostic and predictive analytics tools, and part of the reason is AutoML.

Top Machine Learning Courses & AI Courses Online

Source

Ads of upGrad blog

According to a report, the data explosion in the world is going to increase tenfold, so the world of analytics, AI, machine learning, and data science will see a wave of data and training. And, with the increasing amount of data, here’s why AutoML might be the most used technology in 2023.

Reducing Time To Implement ML Process

The time taken to build an ML model by humans is often too much, and the accuracy is not at par. It would typically take less time for AutoML to implement an ML process when compared to the one under human supervision. With the increasing need for more insights from the big data, organizations are shifting towards amplifying their predictive power by leveraging the abilities of complex automated machine learning.

Trending Machine Learning Skills

An ML process typically consists of data pre-processing, feature selection, feature extraction, feature engineering, algorithm selection, and hyperparameter tuning. These take up more time to implement and require considerable expertise; AutoML, on the other hand, removes the trouble of going through some of these tedious processes.

Now, when it comes to big data and analytics, the industry is rapidly increasing, especially regarding the volume and complexity of big data, cloud computing, and IoT based services. According to a survey, in 2019, the number of firms investing in big data and AI has ballooned to 33.9% from 27% in 2018. This shows that big data-based technologies and analytics will only be increasing, and that is why AutoML will be one of the prime focus of organizations in 2022 to process the vast data.

Join the Artificial Intelligence Course online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.

Bridging The Skills Gap

AutoML holds the great promise of helping the non-tech companies or companies with less data science expertise with the capabilities of building their ML applications. With the launch of Cloud AutoML, based on Neural Architecture Search (NAS) and transfer learning, Google believes that it has the potential to make the existing AI/ML experts more productive along with helping the less skilled engineered to build a powerful AI system.

Technologies like AutoML have given organizations today the capability to quickly build production-ready models without the help of expensive data science. AutoML uses ML, AI, and deep learning to provide businesses, across the world, the opportunity to take advantage of data-driven applications powered by statistical models even with the existing talent gap in the data science industry.

AutoML, along with bridging the talent gap, is also at the same time democratized machine learning. This has helped to carry out processes like hyperparameter tuning, selection of algorithms, and finding the appropriate model — as these tasks are tedious and at the same time complex. Because of AutoML machine learning can now be adapted in various sectors easily by data scientists without any complexity.

Improving Scalability

Generally, when we see machine learning applications like image colourisation, automatic translation, we know that such tasks require massive amounts of data. With this enormous amount of data, training a model takes a long time, and sometimes the model is big and cannot be fitted into a working memory of the training device, and therefore becomes a difficult task.

Plus, the evaluation, experimentation, and deployment of the models might have different use cases. AutoML, on the other hand, makes it easy to handle data, train model, evaluate, experiment, and even deploy the model for different use cases as it takes on the task to find the best algorithm for the task to be done.

Popular AI and ML Blogs & Free Courses

Conclusion

Ads of upGrad blog

Globally the demand for data scientists was projected to exceed supply by more than 50% in 2019. A lot of companies believe that hiring talented data scientists is a tough job because they are scarce and expensive. AutoML is a solution for companies to find a way to bridge the talent gap that exists in the data science industry. Not only does it benefit the less skilled data scientists, but it also saves time for the highly skilled once, so that they can oversee other high priority projects instead of wasting time on the tasks which can be automated by AutoML.

This article was published on analyticsindiamag

If you’re interested to learn more about AI, Machine Learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.

Profile

Sameer Balaganur

Blog Author
A mechanical engineer who found love for analytics, is a full-time sleuth for technology related news and content. He occasionally writes poems, loves food and is head over heels in love with Basketball.
Get Free Consultation

Select Course
Select
By tapping submit, you agree to  UpGrad's Terms & Conditions

Our Popular Machine Learning Course

Suggested Blogs

Introduction to Natural Language Processing
1500
We’re officially a part of a digitally dominated world where our lives revolve around technology and its innovations. Each second the world produces a
Read More

by Abhinav Rai

01 Apr 2023

What is an Algorithm? Simple & Easy Explanation for Beginners [2023]
1500
It is a standard protocol to use maps and blueprints for executing various processes smoothly. Just like an architect uses detailed blueprints to esta
Read More

by Pavan Vadapalli

01 Apr 2023

Recursive Feature Elimination: What It Is and Why It Matters?
1500
Data is the backbone of modern decision-making, and businesses are always looking for ways to extract valuable insights from it. Machine learning is o
Read More

by Pavan Vadapalli

27 Mar 2023

Why AI Is The Future & How It Will Change The Future?
1500
The advent and advancements in Artificial Intelligence (AI) has indeed changed our lives for the better. It refers to software robots’ capabilit
Read More

by Pavan Vadapalli

27 Mar 2023

A Brilliant Future Scope of Machine Learning
1500
A constant form of silent evolution is machine learning. We thought computers were the big all-that that would allow us to work more efficiently; soon
Read More

by Thulasiram Gunipati

26 Mar 2023

What is Supervised Machine Learning? Algorithm, Example
1500
Machine learning is everywhere – from government agencies, retail services, and financial institutions to the healthcare, entertainment, and tra
Read More

by Pavan Vadapalli

23 Mar 2023

All about Informed Search in Artificial Intelligence
1500
Informed search is a type of search algorithm that uses domain-specific knowledge to guide its search through a problem space. From navigation systems
Read More

by Pavan Vadapalli

22 Mar 2023

Future of Retail in the Metaverse
1500
The metaverse is the successor to the mobile internet and the next progression in social connection. Similar to the internet, the metaverse will let y
Read More

by Pavan Vadapalli

17 Mar 2023

5 Significant Benefits of Artificial Intelligence [Deep Analysis]
1500
Artificial Intelligence (AI) has come a long way from being the subject matter of science fiction to being the living and breathing reality of the 21s
Read More

by Kechit Goyal

16 Mar 2023