upGrad USA
  • Data Science & Analytics
  • Machine Learning & AI
  • Doctorate of Business Administration
  • MBA
  • More
    • Product and Project Management
    • Digital Marketing
    • Management
    • Coding & Blockchain
    • General
    • Account & Finance
No Result
View All Result
  • Data Science & Analytics
  • Machine Learning & AI
  • Doctorate of Business Administration
  • MBA
  • More
    • Product and Project Management
    • Digital Marketing
    • Management
    • Coding & Blockchain
    • General
    • Account & Finance
No Result
View All Result
upGrad USA
Home USA Blog Machine Learning & AI Understanding Recurrent Neural Networks: Applications and Examples

Understanding Recurrent Neural Networks: Applications and Examples

Vamshi Krishna sanga by Vamshi Krishna sanga
August 5, 2025
in Machine Learning & AI
RNNs: Applications & Examples
Share on TwitterShare on Facebook

Recurrent neural networks are neural network models specialising in processing sequential data, such as text, speech, or time series information. Unlike standard neural networks, recurrent neural networks have a “memory” that allows them to develop a contextual understanding of the relationships within sequences. 

This introduction will cover recurrent neural networks, the different types, their applications, and their limitations. Read on to better grasp this essential artificial neural network architecture.

What is a Recurrent Neural Network? 

A recurrent neural network (RNN) is a deep learning model trained to process and convert a sequential data input into a specific sequential data output. Sequential data is data such as words, sentences, or time series, where sequential components interrelate based on complex semantics and syntax rules. 

An RNN is a software system comprising many interconnected components mimicking how humans perform sequential data conversions, such as translating text from one language to another. RNNs are mainly replaced by transformer-based artificial intelligence (AI) and large language models (LLM), which are much more efficient in sequential data processing.

How Does a Recurrent Neural Network Work? 

recurrent neural network

RNNs are made of neurons and data-processing nodes that work together to perform complex tasks. The neurons are organised as input, output, and hidden layers. The input layer receives the information to process, and the output layer provides the result. Data processing, analysis, and prediction take place in the hidden layer.  

Hidden layer

RNNs pass the sequential data they receive to the hidden layers one step at a time. However, they also have a self-looping or recurrent workflow: the hidden layer can remember and use previous inputs for future predictions in a short-term memory component. It uses the current input and the stored memory to predict the following sequence. 

For example, consider the sequence: Apple is red. You want the RNN to predict red when it receives the input sequence Apple is. When the hidden layer processes the word Apple, it stores a copy in its memory. 

Next, when it sees what the word is, it recalls Apple from its memory and understands the entire sequence: Apple is for context. It can then predict red for improved accuracy. RNNs are helpful in speech recognition, machine translation, and other language modelling tasks.

Training

Machine learning (ML) engineers train deep neural networks (RNNs) by feeding the model with training data and refining its performance. In ML, the neuron’s weights are signals that determine how influential the information learned during training is when predicting the output. Each layer in an RNN shares the same weight.   

ML engineers adjust weights to improve prediction accuracy. They use a backpropagation through time (BPTT) technique to calculate model error and adjust the weight accordingly. BPTT returns the output to the previous time step and recalculates the error rate. 

This method can identify which hidden state in the sequence is causing a significant error and readjust the weight to reduce the error margin.

What are the Types of Recurrent Neural Networks? 

RNNs are often characterised by one-to-one architecture: one input sequence is associated with one output. However, you can flexibly adjust them into various configurations for specific purposes. The following are several common RNN types.  

  • One-to-many: This RNN type channels one input to several outputs. It enables linguistic applications like image captioning by generating a sentence from a single keyword.  
  • Many-to-many: The model uses multiple inputs to predict multiple outputs. For example, you can create a language translator with an RNN, which analyses a sentence and correctly structures the words in a different language.  
  • Many-to-one: Several inputs are mapped to an output. This is helpful in applications like sentiment analysis, where the model predicts customers’ sentiments, such as positive, negative, and neutral, from input testimonials.

Limitations of Recurrent Neural Networks   

Since the introduction of RNNs, ML engineers have made significant progress in natural language processing (NLP) applications with RNNs and their variants. However, the RNN model family has several limitations.  

  • Exploding gradient: An RNN can wrongly predict the output in the initial training. It would help if you had several iterations to adjust the model’s parameters to reduce the error rate. 

Exploding gradient happens when the gradient increases exponentially until the RNN becomes unstable. When gradients become infinitely large, the RNN behaves erratically, resulting in performance issues such as overfitting.   

  • Vanishing gradient: The vanishing gradient problem occurs when the model’s gradient approaches zero in training. When the gradient vanishes, the RNN fails to learn effectively from the training data, resulting in underfitting.  
  • Slow training time: An RNN processes data sequentially, limiting its ability to process many texts efficiently. 

For example, an RNN model can analyse a buyer’s sentiment from a few sentences. However, it requires massive computing power, memory space, and time to summarise a page of an essay.

upgrad referral

Conclusion

In summary, recurrent neural networks are great at understanding sequences, like words in a sentence. They’ve been used for language translation and speech recognition but have some issues. Other types of AI are replacing them in many cases, but they’ve paved the way for more advanced sequential data processing.

Vamshi Krishna sanga

Vamshi Krishna sanga

72 articles published

Previous Post

Deep Unsupervised Learning via Nonequilibrium Thermodynamics: An In-Depth Guide

Next Post

Step-by-Step Guide to Implementing Linear Regression with Python

  • Trending
  • Latest
Thesis vs Dissertation: How to Pick

Dissertation vs Thesis: Understanding the Key Differences

August 5, 2025
Path to Data Engineer Success

How to Become a Data Engineer: Key Skills and Job Opportunities

August 8, 2025
Deep Learning: Algorithms & Use Cases

Understanding Deep Learning: From Algorithms to Applications

August 5, 2025
Top Accounting Careers in the US

Top Accounting Careers in the US for 2025 and Beyond

August 19, 2025
Network Your Way in Data Science

Why Data Science Networking Matters for US Online Learners

August 7, 2025
Best AI/ML Certs for US Pros

Top AI and ML Certifications to Boost Your Career in the US

August 7, 2025

Get Free Consultation

upgradlogo-1.png

Building Careers of Tomorrow

Get the Android App
apple [#173]Created with Sketch. Get the iOS App
Upgrad
  • About
  • Careers
  • Blog
  • Success Stories
  • Online Power Learning
  • For Business
  • upGrad Institute
Support
  • Contact
  • Terms & Conditions
  • Privacy Policy
  • Referral Policy
Browse Courses by Region
  • Courses in Singapore
  • Courses in the UAE
  • Courses in the US
  • Courses in Canada
  • Courses in Australia
  • Courses in Saudi Arabia
  • Courses in the UK
  • Courses in Vietnam
Popular Posts
  • Top Accounting Careers in the US for 2025 and Beyond
  • Why Data Science Networking Matters for US Online Learners
  • Top AI and ML Certifications to Boost Your Career in the US
  • Salaries for Accountants in the US in 2025: What You Can Expect at Different Career Levels
  • Your 2025 Guide to Becoming a Cloud Developer in the US

KEEP UPSKILLING WITH UPGRAD

Ushering the Era of Learning and Innovation
Back in 2015, upGrad’s founders noticed that the future of work demands industry professionals to upskill continuously – not just for their organization’s benefit but also for their personal growth. Earlier, learning would come to a halt as soon as professionals entered the workspace. upGrad brought along novel approaches towards imparting and receiving education by offering people a chance to upskill while working. We have always strived to facilitate quality education to the upcoming workforce through industry-relevant UG and PG programs.

Staying Dynamic and Forward-Looking
From being incepted in 2015 to teaching a learner base of 10k+ in 2018 to crossing the 1M mark in 2020 – upGrad has always focused on staying dynamic and future-centric. This approach has helped us grow as an organization while catering best-in-class learning to our students. In 2021, upGrad became a unicorn with a valuation of $1.2B, expanding to North America, Europe, the Middle East, and the Asia Pacific. Only onwards and upwards from here!

Growing and Expanding Constantly
Growth has been our true constant in this journey. Whether it is entering the unicorn club or winning the Best Career Planning platform award, or being ranked the #1 startup in India per LinkedIn’s 2020 report – we’ve always strived to go above and beyond our current capacities and bring novel ideas to the table for the betterment of learners across the globe. Join us in this revolution and help us impact more lives!

© 2015-2025 upGrad Education Private Limited. All rights reserved  

No Result
View All Result
  • Data Science & Analytics
  • Machine Learning & AI
  • Doctorate of Business Administration
  • MBA
  • More
    • Product and Project Management
    • Digital Marketing
    • Management
    • Coding & Blockchain
    • General
    • Account & Finance